Warwick scientists uncover how 'checkpoint' proteins bind chromosomes

April 20, 2012

The development of more effective cancer drugs could be a step nearer thanks to the discovery, by scientists at Warwick Medical School, of how an inbuilt 'security check' operates to guarantee cells divide with the correct number of chromosomes.

Most cells in our bodies contain 23 pairs of chromosomes that encode our individual genetic identities. The process of is monitored by a system called the spindle that ensures receive the correct number of chromosomes.

If daughter cells receive an unequal number of chromosomes, known as 'aneuploidy', this drives normal cells to become cancerous. Indeed, the cells of aggressive human tumours are frequently 'aneuploid' with many components of the spindle checkpoint being mutated or mis-expressed. Therefore, determining how the spindle checkpoint operates is vital to understanding what causes, and what can prevent, the formation of tumours.

has published research by Professor Jonathan Millar at the University of Warwick that pinpoints the precise mechanism by which spindle checkpoint proteins bind chromosomes.

Professor Millar explained: "Components of the checkpoint were first discovered 22 years ago by researchers in America and yet, until now, the binding sites for these proteins on chromosomes have remained unknown. We have been able to answer this question and as a result, we are now in a much better position to design more selective and effective drugs."

Currently, one of the most frequently used anti-cancer drugs are taxanes, which prevent proper inactivation of the spindle checkpoint and result in selective death of cancer, but not normal, cells. However, this class of drug can have debilitating side effects including permanent and hair loss – side effects that could be reduced if cancer cells could be targeted more selectively.

Professor Millar was quick to point out that this is not an overnight cure: "This research is a significant advance in our understanding of how the spindle checkpoint operates but it is really just the start. More research has to be done before we can convert this into a commercial treatment for patients. But we are greatly encouraged that our research here at Warwick is leading the way in the search for more effective ."

Explore further: Researchers shed light on how tumor cells form

More information: Current Biology, 19 April 2012. doi: 10.1016/j.cub.2012.03.051

Related Stories

Researchers shed light on how tumor cells form

June 21, 2006

MIT cancer researchers have discovered a process that may explain how some tumor cells form, a discovery that could one day lead to new therapies that prevent defective cells from growing and spreading.

Lack of CHFR gene expression sets stage for breast cancer

June 19, 2008

[B]U-M study lays groundwork for better ways to choose effective treatments, provides insights on other cancers[/B] A University of Michigan study reveals in detail how breast cells produce new cells that are predisposed ...

Researchers identify potential cancer target

January 16, 2009

(PhysOrg.com) -- Dartmouth Medical School researchers have found two proteins that work in concert to ensure proper chromosome segregation during cell division. Their study is in the January 2009 issue of the journal Nature ...

Scientists deconstruct cell division

February 8, 2009

The last step of the cell cycle is the brief but spectacularly dynamic and complicated mitosis phase, which leads to the duplication of one mother cell into two daughter cells. In mitosis, the chromosomes condense and the ...

Recommended for you

Oxygen can impair cancer immunotherapy in mice

August 25, 2016

Researchers have identified a mechanism in mice by which anticancer immune responses are inhibited within the lungs, a common site of metastasis for many cancers. This mechanism involves oxygen inhibition of the anticancer ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.