Brain activity revealed when watching a feature film

May 29, 2012

Human brain functions have been studied in the past using relatively simple stimuli, such as pictures of faces and isolated sounds or words. Researchers from Aalto University Department of Biomedical Engineering and Computational Science have now taken a highly different approach: they have studied brain functions in lifelike circumstances.

In their new study, published in , the group examined how the brain processes the film The Match Factory Girl by Aki Kaurismäki.

Films have been previously used to study , but the brain activity patterns have been integrated over the whole duration of the film, and thus time information is lost. This is like compressing a whole film into just one frame. In some studies, scientists have looked at dynamic brain activity, but focusing on a single brain region at a time.

The Aalto University scientists on the other hand study the full brain activity patterns with the time resolution allowed by functional magnetic resonance imaging. This way it possible to find out which events in the film cause changes in the brain activity, and which brain areas are activated at each moment.

This analysis revealed, for example, that parts of a brain network that usually respond to speech also become activated during other types of communication, such as writing. Some other areas of the network were very selective to speech.

The researchers combined two complementary approaches to disclose the brain activity. One based on dependencies of activation in different parts of the brain, and the other begins from detailed analysis of the visual and acoustic features of which the film is composed.

The results revealed brain networks in which activity follows remarkably well the complex model of the auditory and visual features of the film. For example, brain activity in the auditory cortex followed the soundtrack extremely well over the whole length of the film, and viewing the motions of characters' hands reliably activated widespread areas of the brain.

"Our study opens new ways for studying human brain functions. Many brain areas that process sensory information reveal their principles only if sufficiently complex and naturalistic are used," explain researcher Juha Lahnakoski and Professor Mikko Sams from Aalto University Department of and .

The new methods also make it possible to study brain mechanisms' underlying behaviour in normal everyday conditions – by simulating them in films.

Explore further: New study examines brain processes behind facial recognition

More information: Lahnakoski JM, Salmi J, Jääskeläinen IP, Lampinen J, Glerean E, Tikka P, and Sams M. (2012) Stimulus-Related Independent Component and Voxel-Wise Analysis of Human Brain Activity during Free Viewing of a Feature Film. PLoS ONE 7(4): e35215. doi:10.1371/journal.pone.0035215

Related Stories

Brain waves control the impact of noise on sleep

September 6, 2011

During sleep, our perception of the environment decreases. However the extent to which the human brain responds to surrounding noises during sleep remains unclear. In a study published this week in Proceedings of the National ...

In the brain, winning is everywhere

October 5, 2011

Winning may not be the only thing, but the human brain devotes a lot of resources to the outcome of games, a new study by Yale researchers suggest.

Nudity tunes up the brain

November 17, 2011

Researchers at the University of Tampere and the Aalto University, Finland, have shown that the perception of nude bodies is boosted at an early stage of visual processing.

Recommended for you

Neuron responsible for alcoholism found

September 2, 2015

Scientists have pinpointed a population of neurons in the brain that influences whether one drink leads to two, which could ultimately lead to a cure for alcoholism and other addictions.

Scientists see motor neurons 'walking' in real time

September 2, 2015

When you're taking a walk around the block, your body is mostly on autopilot—you don't have to consciously think about alternating which leg you step with or which muscles it takes to lift a foot and put it back down. That's ...

Neural basis of multitasking identified

September 1, 2015

What makes someone better at switching between different tasks? Looking for the mechanisms behind cognitive flexibility, researchers at the University of Pennsylvania and Germany's Central Institute of Mental Health in Mannheim ...

Deciphering the olfactory receptor code

August 31, 2015

In animals, numerous behaviors are governed by the olfactory perception of their surrounding world. Whether originating in the nose of a mammal or the antennas of an insect, perception results from the combined activation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.