Improving detection of drug-resistant tuberculosis

May 2, 2012

(Medical Xpress) -- European researchers are developing new assays to detect drug resistant strains of Mycobacterium tuberculosis.

Early detection of drug resistance constitutes one of the priorities of (TB) control programmes. It allows initiation of the appropriate treatment in patients and also surveillance of drug resistance. Associated with this problem is the emergence of multi-drug–resistant (MDR) and extensive drug-resistant (XDR) strains of M. tuberculosis.

Detection of drug resistance has been performed in the past by so-called ‘conventional methods’ based on detection of growth of M. tuberculosis in the presence of antibiotics. Such methods are, however, time consuming and thus necessitates the development of easier, and more reliable and rapid assays.

The main objective of the EU-funded FAST-XDR-Detect project was to develop an assay for the rapid detection of drug-resistant M. tuberculosis. Project partners used a method known as rifoligotyping which involves amplification of the genomic sequence of the bacteria found in TB patients, followed by hybridisation against the wild-type sequence. This molecular assay was optimised for detection of resistance to rifampicin and isoniazid, two of the most common anti-tuberculosis antibiotics.

At the same time, efforts were made to optimise an assay that can detect antibiotic-resistant strains directly from patient sputum for the simultaneous detection of MDR and XDR . This assay is expected to reduce processing time and allow the identification of drug-resistant strains based on phenotypic criteria.

Additionally, new mutations responsible for drug resistance were sequenced and entered into an existing database with all gene mutations associated with drug resistance in TB. Researchers also sought to explore the possibility that other candidate genes could be contributing to the emergence of new forms of drug resistance.

FAST-XDR-Detect project developed assays for the rapid and sensitive detection of MDR and XDR M. tuberculosis. More effective screening methods for TB will improve the surveillance of , prompting health authorities to initiate appropriate correction measures.

Related Stories

Recommended for you

Zika virus infection alters human and viral RNA

October 20, 2016

Researchers at University of California San Diego School of Medicine have discovered that Zika virus infection leads to modifications of both viral and human genetic material. These modifications—chemical tags known as ...

Food-poisoning bacteria may be behind Crohn's disease

October 19, 2016

People who retain a particular bacterium in their gut after a bout of food poisoning may be at an increased risk of developing Crohn's disease later in life, according to a new study led by researchers at McMaster University.

Neurodevelopmental model of Zika may provide rapid answers

October 19, 2016

A newly published study from researchers working in collaboration with the Regenerative Bioscience Center at the University of Georgia demonstrates fetal death and brain damage in early chick embryos similar to microcephaly—a ...

Scientists uncover new facets of Zika-related birth defects

October 17, 2016

In a study that could one day help eliminate the tragic birth defects caused by Zika virus, scientists from the Florida campus of The Scripps Research Institute (TSRI) have elucidated how the virus attacks the brains of newborns, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.