The balancing act to regulate the brain machinery

The balancing act to regulate the brain machinery
Credit: Thinkstock

Molecular imbalance lies at the root of many psychiatric disorders. Current EU-funded research has discovered a major RNA molecular player in neurogenesis and has characterised its action and targets in the zebrafish embryo.

Neural circuits are constantly in the process of modification according to experience and changes in the environment, a phenomenon known as plasticity. Classical Hebbian plasticity is crucial for encoding information whereas homeostatic plasticity stabilises in the face of changes that disturb excitability.

Homeostatic plasticity plays a big role in activity-dependent development of . Interestingly, this type of homeostasis is frequently distorted in such as schizophrenia and autism.

Unlike the molecular basis of Hebbian homeostasis, the biochemistry behind homeostatic plasticity is relatively unknown. The 'MicroRNAs and control' (Neuromir) project set about investigating in the zebrafish embryo to unravel the action of one class of gene regulator in particular – microRNAs.

The microRNA machinery is potentially very powerful in cell regulation. It influences many development processes and each microRNA molecule can regulate hundreds of target genes.

Numerous microRNAs are expressed in the development of the vertebrate central nervous system (CNS). Results from the in vivo study of the zebrafish revealed that miR-9 plays an important role in balancing the production of neurons during development of the embryo.

Neuromir researchers have successfully identified the molecular targets of miR-9. Future research may exploit this knowledge base by assessing their importance in disease and using their molecular format for drug therapy design.

add to favorites email to friend print save as pdf

Related Stories

Brain plasticity: Changes and resets in homeostasis

Jun 25, 2009

In an article published in the June 25th edition of the journal Neuron, researchers at the Hotchkiss Brain Institute, University of Calgary, have found that synaptic plasticity, long implicated as a device for 'change' in the ...

Stem cells are good for the brain

Jul 15, 2008

For some years, scientists have been speculating over why stem cells exist in the brain, as brain regeneration is limited. A German team of neuroscientists believe these stem cells help keep the brain healthy and active.

Study suggests caution on a new anti-obesity drug in children

May 07, 2008

A new class of anti-obesity drugs that suppresses appetite by blocking cannabinoid receptors in the brain could also suppress the adaptive rewiring of the brain necessary for neural development in children, studies with mice ...

Recommended for you

New test to help brain injury victims recover

14 minutes ago

A dynamic new assessment for helping victims of trauma to the brain, including those suffering from progressive conditions such as dementia, has been developed by a clinical neuropsychologist at the University ...

See-through sensors open new window into the brain

2 hours ago

(Medical Xpress)—Developing invisible implantable medical sensor arrays, a team of University of Wisconsin-Madison engineers has overcome a major technological hurdle in researchers' efforts to understand ...

User comments