New device will advance cancer treatment

By Caroline Shin and Bill Steele
The "sticky" square patch (middle) of the GEDI device contains the purest collection of circulating tumor cells in the blood. The rest of the blood cells are discarded in the capsule. Image: Caroline Shin

(Medical Xpress) -- The future of prostate cancer therapy may lie in a tiny, "sticky" silicon chip dubbed GEDI (Geometrically Enhanced Differential Immunocapture, pronounced like the "Star Wars" forces of good) that can identify and collect cancer cells from a patient's bloodstream.

A team of researchers at Weill Cornell Medical College in New York City and Cornell's College of Engineering in Ithaca has built the chip into a device that captures an unprecedentedly high concentration of cells from metastatic patients for a quick, noninvasive analysis to determine the efficacy of the patients' current chemotherapy. The ability to collect a relatively pure sample of (CTCs) may also enable research to better understand the biology of metastasis and develop new treatments, the researchers said.

Their work is described in a paper in the April 2012 issue of the journal , and was announced in a press conference at Weill by Brian Kirby, associate professor of mechanical and aerospace engineering; David Nanus, M.D., the Mark W. Pasmantier Professor of and Oncology in Medicine; and Evi Giannakakou, associate professor of pharmacology. The team includes 12 other researchers from both campuses.

Metastatic cancer is cancer that has spread from the place where it first started -- in this case, the prostate -- to another place in the body, most commonly the lungs, bones and liver. Metastasis accounts for the majority of cancer-related deaths.

"We need to be able to match the drug to the patient and the tumor," said Nanus. But tumor cells habitually mutate and develop a resistance to a previously . In the case of prostate cancer, three drugs are in common use, but the most effective one varies with the patient and the particular cancer.

New device will advance cancer treatment
On the GEDI chip, blood flows through an array of posts just a few millionths of a meter in diameter, coated with antibodies that stick to cancer cells. Each row of posts is offset from the one before by a distance that causes the larger cancer cells to collide with them - and stick on - more often, while other cells in the blood flow smoothly past.

Metastasis is believed to be caused by cells that detach from the primary , circulate in the and seed new tumors. Extensive clinical research shows that a reliable CTC count is a strong predictor of overall survival in metastatic prostate cancer patients. However, since the incidence of CTCs can be very small -- one CTC per 100 million blood cells -- pure CTC capture is difficult.

"This really is a needle in a haystack," Kirby emphasized.

Cell-capture devices now in use contain antibodies that bind to an antigen found on the surface of nearly all malignant prostate cancer cells. But these antibodies also bind to other cells in the bloodstream and can collect a highly impure sample.

On the GEDI chip, a milliliter (mL, one-thousandth of a liter) of blood is pumped through a nanoscale channel filled with tiny posts just a few microns (millionths of a meter) in diameter, coated with antibodies. Successive rows of posts are offset in a carefully calculated way so that only cells larger than 15 microns will collide with the posts and stick to them, while most smaller cells flow smoothly around them.

"Most cancer cells are bigger and more rigid than normal cells, so it's about tricking these into colliding with the sticky walls," Kirby explained.

After the test the chip is removed from the device and the captured cells extracted for analysis. In an experiment with a blood sample containing 200mL of CTCs and 5 billion blood cells, the device captured a whopping 170mL of CTCs and only 91mL of irrelevant blood .

The GEDI device is scheduled to go into clinical trial this year. Meanwhile, the researchers are actively working on detectors for breast, ovarian and pancreatic cancers.

The research is one of several joint Ithaca-New York City projects associated with the Cornell Center for Microenvironment and Metastasis, a $13 million National Institutes of Health-funded Physical Sciences-Oncology Center created to use physical techniques and processes to improve understanding and care of metastatic cancer in patients.

Related Stories

Revisiting the need to detect circulating tumor cells

Mar 16, 2010

One of the most dangerous characteristics of cancer is its ability to metastasize, or spread through the body. For this reason, oncologists have a major need for better tests to detect cells that break away from primary tumors ...

Recommended for you

Putting the brakes on cancer

15 hours ago

A study led by the University of Dundee, in collaboration with researchers at our University, has uncovered an important role played by a tumour suppressor gene, helping scientists to better understand how ...

Peanut component linked to cancer spread

16 hours ago

Scientists at the University of Liverpool have found that a component of peanuts could encourage the spread and survival of cancer cells in the body.

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.