A new dimension for cell culture (w/ Video)

Cancer cells and stem cells can now be cultivated in 3 dimensions to serve in various experiments to great advantage for researchers. This matrix, commercialized by the start-up QGel, which is based in the scientific park at Ecublens, offers the cells a similar environment to a living organism and is adaptable to the needs of the researcher. The new company received the Vigier Prize on Thursday, which comes with a cash sum of 100,000 francs.

The basic substance resembles a gel, but it is in fact a biocompatible and to which different such as collagen or growth factors can be added. This substance, produced in Jura, is presented as a small flask containing dehydrated gel to which water must be added. One can then reproduce the extracellular matrix in which live inside organisms. Contrary to the traditional , where cells form a simple layer, studies have shown that with this substance, the cells grow and assimilate just as they do in their natural environment.

Cultivating cells in such an environment facilitates the study of potential medications in conditions similar to cells in vivo. For example, we know that when a tumor grows, its oxygen levels decrease. The matrix developed by the start-up allows one to reproduce such phenomena among others, which make the efficiency of the active substance vary, thus yielding more realistic conditions. The growing longevity of the cells cultivated in vitro inside the gel also allows the researcher to add the medication being tested at different intervals in order to study its impact according to the moment when it is used. This allows for the exclusion of superfluous molecules during the very first phases of the test.

This video is not supported by your browser at this time.
The system developed by QGel allows for new tests of anti-cancer medication and novel experimentation in tissue engineering and regenerative medicine.

It’s the that confers the specific properties to the tissues. The secret to the welfare of cells lies in the creation of a custom-built and ideal environment. Growth factors, proteins, peptides or other components can be added to the gel. In the case of , for instance, it is possible to add molecules that indicate which tissue, nerve or vessel they must form and which direction they must grow.

“Research in regenerative medicine and tissue engineering, as well as the development of new medication, should gain in speed and reliability,” explains Matthias Lütolf, professor of stem cell bioengineering and co-founder of the start-up with Colin Sactuary, CEO. A robot’s capacity to perform quick tests on a big scale has been adapted to the utilization of this gel for a more efficient and precise outcome. The cosmetic industry has even shown interest in this product for testing the toxicity of certain substances – especially since in vivo tests will be prohibited in Europe as of 2013.

The product commercialized by QGel is the result of a long and laborious effort guided by Jeff Hubbell, a professor at the Laboratory of Regenerative Medicine and bio-pharmacology at EPFL, and whose research is associated with projects at Stanford, ETHZ, University of Zurich and the California Institute of Technology. “Other research groups are developing systems to cultivate cells in three dimensions, but none of them are at the same time as stable, robot-friendly, inexpensive, identically reproducible and adaptable”, states Matthias Lütolf. Though their product is already used by many research institutes, the next aim of the start-up is to get 2 million francs to create its own laboratory, where they can custom make the gels and independently sell them to pharmaceutical groups.

Related Stories

Bits of life, drop by drop

Jan 16, 2012

(PhysOrg.com) -- Swiss scientists are working on creating artificial living tissues using a very special kind of inkjet printer. Still in its initial stages, this technology could nonetheless soon provide ...

Your fat may help you heal

Mar 25, 2010

It frequently happens in science that what you throw away turns out to be most valuable. It happened to Deepak Nagrath, but not for long.

Recommended for you

Breakthrough in understanding of important blood protein

34 minutes ago

The human body contains a unique protein that has the unusual property of destroying itself after a few hours of existence - it must therefore be continually recreated and is no stable protein. The protein, ...

Key to aging immune system is discovered

1 hour ago

There's a good reason people over 60 are not donor candidates for bone marrow transplantation. The immune system ages and weakens with time, making the elderly prone to life-threatening infection and other ...

Putting a number on pain

1 hour ago

"How much pain are you in?" It's a harder question than many people think. Tools for assessing patients' pain—be they children or adults—rely on perception: a subjective measure that eludes quantification ...

New infections cause dormant viruses to reactivate

1 hour ago

The famous slogan is "A diamond is forever," but that phrase might be better suited to herpes: Unlike most viruses, which succumb to the immune system's attack, herpes remains in the body forever, lying in wait, sometimes ...

User comments