Study explains fast tumor migration

This image shows the traction polarization along the direction of migration for a cell in a confined space, explaining increased migration speed.

(Phys.org) -- Bioengineering Professor Sanjay Kumar’s lab at the UC Berkeley today released major new research showing that tumor cells are able to migrate faster through confined spaces in the body.

The findings are published in the Proceedings of the National Academy of Sciences, co-authored by Kumar and postdoctoral researcher Amit Pathak.

Scientists know that the invasion of tumors through tissue is regulated both by mechanical properties of the tissue, such as its stiffness, and tissue microstructure properties, such as pore size. However, past attempts to study and understand these mechanisms in detail have been complicated by the fact that it is extremely difficult to change one property without changing the other.

Through newly-developed techniques, the Kumar Lab has shown for the first time that the two parameters regulate motility in very different ways and, rather surprisingly, confinement of actually enables them to move more rapidly and directionally than they do in wide open spaces.

The researchers have developed a microfabricated platform that enables the creation of 3D channels of independently-defined size and stiffness. This structure allowed them to see that narrow channels enable cells to develop traction against the scaffold in a more focused way.

“Since there is only one way to go,” explained Kumar, “the cell doesn’t waste its ‘energy’ exploring other avenues.”

This may be a physiologically important mechanism, as malignant brain tumors tend to infiltrate most rapidly along tissue interfaces and confined spaces, such as blood vessels and nerve tracts.

More information: www.pnas.org/content/early/201… 073109.full.pdf+html

Related Stories

Researchers suggest a proximate cause of cancer

Jan 26, 2012

(PhysOrg.com) -- Researchers from The University of Texas at Austin’s Department of Chemical Engineering are the first to show that mechanical property changes in cells may be responsible for cancer progression ...

New biomaterial more closely mimics human tissue

May 26, 2011

(PhysOrg.com) -- A new biomaterial designed for repairing damaged human tissue doesn’t wrinkle up when it is stretched. The invention from nanoengineers at the University of California, San Diego marks ...

Picking cancer stem cells out of the crowd

Jun 15, 2011

(Medical Xpress) -- Stem cells receive a vast amount of research attention due to their abilities to differentiate, heal, and divide in perpetuity, properties that yield promise for regenerative medicine. In cancer stem cells, ...

Recommended for you

How a common antacid could lead to cheaper anti-cancer drugs

12 hours ago

A popular indigestion medication can increase survival in colorectal cancer, according to research published in ecancermedicalscience. But in fact, scientists have studied this for years - and a group of cancer advocates want t ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.