Novel anti-malarial drug target identified

This is an illustration of Anopheles darlingi. Credit: UC San Diego School of Medicine

An international team of scientists, led by researchers from the Department of Pediatrics at the University of California, San Diego School of Medicine, have identified the first reported inhibitors of a key enzyme involved in survival of the parasite responsible for malaria. Their findings, which may provide the basis for anti-malarial drug development, are currently published in the online version of the Journal of Medicinal Chemistry.

Tropical malaria is responsible for more than 1.2 million deaths annually. Severe forms of the disease are mainly caused by the parasite Plasmodium falciparum, transmitted to humans by female . has not been possible due to the lack of vaccines and the parasite's ability to develop resistance to most drugs.

The researchers conducted high-throughput screening of nearly 350,000 compounds in the National Institutes of Health's Molecular Libraries Small Molecule Repository (MLSMR) to identify compounds that inhibit an enzyme which plays an important role in parasite development: Plasmodium falciparum glucose-6-phosphate dehydrogenase (PfG6PD) is essential for proliferating and propagating P. falciparum.

"The enzyme G6PD catalyzes an initial step in a process that protects the from oxidative stress in , creating an environment in which the parasite survives," said senior author Lars Bode, PhD, assistant professor in the UCSD Department of Pediatrics, Division of and the Division of Gastroenterology, and Nutrition. People with a natural deficiency in this enzyme are protected from malaria and its deadly symptoms, an observation that triggered the reported research.

The parasitic form of the enzyme (PfG6PD) is what contributes the majority of G6PD activity in infected red blood cells. Because the parasite lives in the blood of a malaria-infected person, the scientists aimed at identifying compounds that inhibit the parasitic form but not the human form of the enzyme. "We didn't want to interfere with the human form of the enzyme and risk potential side effects," Bode explained.

Scientific testing had previously been limited by a lack of recombinant PfG6PD. Team members in the lab of Katja Becker, PhD, at the Interdisciplinary Research Center at Justus-Liebig-University in Giessen, Germany produced the first complete and functional recombinant PfG6PD, and researchers led by Anthony Pinkerton, PhD, at Sanford-Burnham Medical Research Institute used it to identify the lead compound resulting from their efforts, ML276.

ML276 represents the first reported selective PfG6PD inhibitor, which stops the growth of malaria parasites in cultured red blood cells – even those parasites that developed resistance to currently available drugs. "ML276 is a very promising basis for future drug design of new anti-malarial therapeutics," said Bode.

Related Stories

Blood-thinning copycat enters malaria fight

Jun 01, 2010

New treatments for malaria are possible after Walter and Eliza Hall Institute scientists found that molecules similar to the blood-thinning drug heparin can stop malaria from infecting red blood cells.

New hope for advances in treating malaria

Apr 22, 2009

Researchers at the University of Leeds have developed chemicals which kill the most deadly malaria-causing parasite, Plasmodium falciparum - including those resistant to existing drugs.

Recommended for you

Biologists reprogram skin cells to mimic rare disease

18 hours ago

Johns Hopkins stem cell biologists have found a way to reprogram a patient's skin cells into cells that mimic and display many biological features of a rare genetic disorder called familial dysautonomia. ...

Student seeks to improve pneumonia vaccines

Aug 20, 2014

Almost a million Americans fall ill with pneumonia each year. Nearly half of these cases require hospitalization, and 5-7 percent are fatal. Current vaccines provide protection against some strains of the ...

User comments