Early activation of immune response could lead to better vaccines

Researchers at Albert Einstein College of Medicine of Yeshiva University have discovered a new "first response" mechanism that the immune system uses to respond to infection. The findings challenge the current understanding of immunity and could lead to new strategies for boosting effectiveness of all vaccines. The study, conducted in mice, published online today in the journal Immunity.

Grégoire Lauvau, Ph.D.One way the protects the body against microbes like bacteria and viruses is with memory CD8+ T cells, so named because they can "remember" the invading organisms. If someone is later infected by that same microbe, memory CD8+ T cells recognize the invaders and multiply rapidly, forming an army of to hunt down and destroy the microbes and the cells they've infected. This highly forms the basis for most vaccines—but it can take several weeks for them to prime the immune system to respond to "real" infections.

This new study shows that the immune system has another, faster method for responding to infections that could be exploited to produce faster-acting vaccines.

"Our research has revealed that pathogen-specific memory CD8+ T cells are reactivated even before they recognize the antigen they previously encountered," said study leader Grégoire Lauvau, Ph.D., associate professor of microbiology and immunology at Einstein. (Antigens are of microbes that trigger an immune response.)

Dr. Lauvau and his colleagues found that this fast-acting immune response is orchestrated by a type of white cell called inflammatory . After the immune system detects an infection, it recruits monocytes to the affected tissues, where they release inflammatory signals called cytokines. Those inflammatory signals not only activate every memory CD8+ T cell that has previously encountered a pathogen but also stimulate the activation of , another type of white blood cell.

The result is a protective immunologic environment capable of defending against of any kind—viruses, bacteria or parasites. Only later do memory CD8+ T cells specific for that microbe's antigen begin to multiply, enabling the immune system to launch its focused attack on that particular microbe.

"We're not saying that recognizing the antigen is unimportant in the immune response," says Dr. Lauvau. "You do need the antigen later on, to cause memory CD8+ T cells to multiply and to get full pathogen-specific protection. But it doesn't seem to be needed during the days immediately following re-infection, when this early form of immunity is operating."

"It's too early to apply these findings clinically," said Dr. Lauvau. "For example, we still need to identify all of the cells and signaling molecules that are involved, and learn how and when the immune system switches from the first phase of protection to the second phase, where you have the antigen. But the important concept to take from this study is that it may be possible to improve vaccines by making this early, generalized immune response persist for a longer time until the later, targeted immune response kicks in."

Related Stories

Research describes advantages of new vaccine adjuvant

Dec 12, 2011

New research from the laboratory of Dr. Elizabeth Leadbetter at the Trudeau Institute may lead to a whole new class of vaccines. Dr. Leadbetter's lab has discovered new properties of a potential vaccine adjuvant that suggest ...

Lasting T cell memories

Mar 05, 2012

The generation of new memories in the human immune system doesn't come at the cost of old ones, according to a study published on March 5th in the Journal of Experimental Medicine.

Skin sentry cells promote distinct immune responses

Jul 21, 2011

A new study reveals that just as different soldiers in the field have different jobs, subsets of a type of immune cell that polices the barriers of the body can promote unique and opposite immune responses against the same ...

Recommended for you

New hay fever blood test nothing to sneeze at

Sep 29, 2014

(Medical Xpress)—Brisbane researchers have developed a blood test that can accurately detect one of the commonest causes of hay fever, paving the way for new treatments.

Geisel researchers contribute to study of trained immunity

Sep 26, 2014

A study published in the journal science provides support for a new—and still controversial—understanding of the immune system. the research was conducted by collaborators in the U.S. and Europe, including Robert Cramer ...

New app offers relief for hay fever sufferers

Sep 25, 2014

Hay fever and asthma sufferers in Canberra will soon be able to receive daily counts and forecasts of pollen levels thanks to a free app released by ANU researchers.

User comments