New study represents major breakthrough in macular degeneration

August 6, 2012

University of Kentucky researchers, led by Dr. Jayakrishna Ambati, have made an exciting finding in the "dry" form of age-related macular degeneration known as geographic atrophy (GA). GA is an untreatable condition that causes blindness in millions of individuals due to death of retinal pigmented epithelial cells.

The paper, "ERK1/2 Activation is a in Age-Related Macular Degeneration" appears in the current online issue of the premier journal .

Ambati, professor of physiology, and professor and vice chair of ophthalmology and visual sciences at UK, is a leader in the field of macular degeneration research. Previous research from the Ambati laboratory published in the journal Nature showed that in human eyes with geographic atrophy there is a deficiency of the enzyme DICER1, leading to accumulation of toxic Alu in the retinal pigmented epithelium. Another paper published in the journal Cell showed that when these RNAs build up in the eye they trigger activation of an immune complex known as the NLRP3 inflammasome. In turn, this leads to the production of a molecule known as IL-18, which causes death of retinal pigmented and vision loss by activating a known as MyD88. Importantly, Ambati and colleagues found evidence that activity of the inflammasome, IL-18, and MyD88 were all increased in human eyes with GA. They then showed that blocking any of these components could prevent retinal degeneration in multiple . The researchers are excited that blocking these pathways could herald a new potential therapy for GA, for which there is no approved treatment.

In the current paper, the authors show that Alu RNA, which increases following DICER1 deficit, activates a family of enzymes known as extracellular-signal-regulated kinases (ERK) 1/2. ERK 1/2, which are also known as classical mitogen-activated protein kinases (MAPKs), were found to be increased in the RPE of human eyes with GA and shown to be key mediators of RPE cell death. This work further defines the mechanisms of cell death in human GA and identifies a new therapeutic target for the dry form of AMD.

Explore further: First gene associated with dry macular degeneration found

Related Stories

First gene associated with dry macular degeneration found

August 27, 2008

In a study that underscores the important role that individual genetic profiles will play in the development of new therapies for disease, a multi-institutional research team – led by Kang Zhang, MD, PhD professor of ophthalmology ...

Pivotal discoveries in age-related macular degeneration

February 6, 2011

A team of researchers, led by University of Kentucky ophthalmologist Dr. Jayakrishna Ambati, has discovered a molecular mechanism implicated in geographic atrophy, the major cause of untreatable blindness in the industrialized ...

Vision loss slowed by encapsulated cell therapy

April 7, 2011

(PhysOrg.com) -- A phase 2 clinical trial for the treatment of a severe form of age-related macular degeneration called geographic atrophy (GA) has become the first study to show the benefit of a therapy to slow the progression ...

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.