New study represents major breakthrough in macular degeneration

University of Kentucky researchers, led by Dr. Jayakrishna Ambati, have made an exciting finding in the "dry" form of age-related macular degeneration known as geographic atrophy (GA). GA is an untreatable condition that causes blindness in millions of individuals due to death of retinal pigmented epithelial cells.

The paper, "ERK1/2 Activation is a in Age-Related Macular Degeneration" appears in the current online issue of the premier journal .

Ambati, professor of physiology, and professor and vice chair of ophthalmology and visual sciences at UK, is a leader in the field of macular degeneration research. Previous research from the Ambati laboratory published in the journal Nature showed that in human eyes with geographic atrophy there is a deficiency of the enzyme DICER1, leading to accumulation of toxic Alu in the retinal pigmented epithelium. Another paper published in the journal Cell showed that when these RNAs build up in the eye they trigger activation of an immune complex known as the NLRP3 inflammasome. In turn, this leads to the production of a molecule known as IL-18, which causes death of retinal pigmented and vision loss by activating a known as MyD88. Importantly, Ambati and colleagues found evidence that activity of the inflammasome, IL-18, and MyD88 were all increased in human eyes with GA. They then showed that blocking any of these components could prevent retinal degeneration in multiple . The researchers are excited that blocking these pathways could herald a new potential therapy for GA, for which there is no approved treatment.

In the current paper, the authors show that Alu RNA, which increases following DICER1 deficit, activates a family of enzymes known as extracellular-signal-regulated kinases (ERK) 1/2. ERK 1/2, which are also known as classical mitogen-activated protein kinases (MAPKs), were found to be increased in the RPE of human eyes with GA and shown to be key mediators of RPE cell death. This work further defines the mechanisms of cell death in human GA and identifies a new therapeutic target for the dry form of AMD.

Related Stories

Pivotal discoveries in age-related macular degeneration

Feb 06, 2011

A team of researchers, led by University of Kentucky ophthalmologist Dr. Jayakrishna Ambati, has discovered a molecular mechanism implicated in geographic atrophy, the major cause of untreatable blindness ...

First gene associated with dry macular degeneration found

Aug 27, 2008

In a study that underscores the important role that individual genetic profiles will play in the development of new therapies for disease, a multi-institutional research team – led by Kang Zhang, MD, PhD professor of ophthalmology ...

Recommended for you

Growing a blood vessel in a week

15 hours ago

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

18 hours ago

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments