Therapeutic avenues for Parkinson's investigated at UH

Scientists at the University of Houston (UH) have discovered what may possibly be a key ingredient in the fight against Parkinson's disease.

Affecting more than 500,000 people in the U.S., Parkinson's disease is a degenerative disorder of the marked by a loss of certain in the brain, causing a lack of dopamine. These dopamine-producing neurons are in a section of the midbrain that regulates body control and movement. In a study recently published in the (PNAS), researchers from the UH Center for Nuclear Receptors and Cell Signaling (CNRCS) demonstrated that the liver X receptor beta (LXRbeta) may play a role in the prevention and treatment of this progressive neurodegenerative disease.

"LXRbeta performs an important function in the development of the central nervous system, and our work indicates that the presence of LXRbeta promotes the survival of dopaminergic neurons, which are the main source of dopamine in the central nervous system," said CNRCS director and professor Jan-Åke Gustafsson, whose lab discovered LXRbeta in 1995. "The receptor continues to show promise as a potential therapeutic target for this disease, as well as other neurological disorders."

To better understand the relationship between LXRbeta and Parkinson's disease, the team worked with a , called MPTP, a contaminant found in street drugs that caused Parkinson's in people who consumed these drugs. In lab settings, MPTP is used in murine models to simulate the disease and to study its pathology and possible treatments.

The researchers found that the absence of LXRbeta increased the harmful effects of MPTP on dopamine-producing neurons. Additionally, they found that using a drug that activates LXRbeta receptors prevented the destructive effects of MPTP and, therefore, may offer protection against the neurodegeneration of the midbrain.

"LXRbeta is not expressed in the dopamine-producing neurons, but instead in the microglia surrounding the neurons," Gustafsson said. "Microglia are the police of the brain, keeping things in order. In Parkinson's disease the microglia are overactive and begin to destroy the healthy neurons in the neighborhood of those neurons damaged by MPTP. LXRbeta calms down the microglia and prevents collateral damage. Thus, we have discovered a novel for treatment of Parkinson's disease."

More information: doi: 10.1073/pnas.1210833109

Related Stories

RXR activation -- hope for new Parkinson's disease treatment

Dec 11, 2009

Following up on their previous work showing the rescue of dopamine neurons by chemicals that interact with the retinoid X receptor (RXR), researchers have now investigated the potential of these chemicals, known as RXR ligands, ...

Tracing Parkinson's lethal mechanism

Jul 05, 2007

In the vast majority of Parkinson’s disease (PD) patients, the disorder arises not because of a genetic defect, but because some external insult triggers the death of dopamine-producing neurons. Now, researchers have reported ...

Recommended for you

A 'frenemy' in Parkinson's disease takes to crowdsourcing

12 hours ago

The protein alpha-synuclein is a well-known player in Parkinson's disease and other related neurological conditions, such as dementia with Lewy bodies. Its normal functions, however, have long remained unknown. An enticing ...

Mechanism of Parkinson's spread demonstrated

Sep 22, 2014

An international, interdisciplinary group of researchers led by Gabor G. Kovacs from the Clinical Institute of Neurology at the MedUni Vienna has demonstrated, through the use of a new antibody, how Parkinson's ...

Researchers debunk myth about Parkinson's disease

Sep 16, 2014

Using advanced computer models, neuroscience researchers at the University of Copenhagen have gained new knowledge about the complex processes that cause Parkinson's disease. The findings have recently been ...

User comments