Disability caused by traumatic brain injury in children may persist and stop improving after 2 years

September 18, 2012
Credit: ©2012 Mary Ann Liebert, Inc., publishers

A child who suffers a moderate or severe traumatic brain injury (TBI) may still have substantial functional disabilities and reduced quality of life 2 years after the injury. After those first 2 years, further improvement may be minimal. Better interventions are needed to prevent long-lasting consequences of TBI in children conclude the authors of a study published in Journal of Neurotrauma.

Frederick Rivara and colleagues from University of Washington, Seattle, and Mary Bridge Children's Hospital, Tacoma, WA, and Children's Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, describe the functional and quality of life outcomes of children who experienced a moderate or severe TBI when they were 0-17 years of age. In the article "Persistence of Disability 24 to 36 Months after Pediatric : A " they follow up on a previous report that found improvement in some areas of functioning for up to 24 months. In this expanded study, the authors showed no significant improvement in the children's ability to function, participate in activities, or in their quality of life between 24 and 36 months post-injury, and they suggest that a plateau is reached in the recovery.

"This important communication by Rivara and colleagues reinforces the concept that pediatric traumatic brain injury is associated with significant enduring morbidity, with recovery plateauing over time," says John T. Povlishock, PhD, Editor-in-Chief of and Professor, VCU Neuroscience Center, Medical College of Virginia, Richmond. "This finding also reinforces emerging thought that pediatric traumatic brain injury must be viewed in another context, rather than the current perception that the course of such injury parallels that found in the ."

More information: The article is available free on the Journal of Neurotrauma website at http://www.liebertpub.com/neu.

Related Stories

Recommended for you

Surprising similarity in fly and mouse motion vision

July 29, 2015

At first glance, the eyes of mammals and those of insects do not seem to have much in common. However, a comparison of the neural circuits for detecting motion shows surprising parallels between flies and mice. Scientists ...

Research grasps how the brain plans gripping motion

July 28, 2015

With the results of a new study, neuroscientists have a firmer grasp on the way the brain formulates commands for the hand to grip an object. The advance could lead to improvements in future brain-computer interfaces that ...

New research rethinks how we grab and hold onto objects

July 28, 2015

It's been a long day. You open your fridge and grab a nice, cold beer. A pretty simple task, right? Wrong. While you're debating between an IPA and a lager, your nervous system is calculating a complex problem: how hard to ...

It don't mean a thing if the brain ain't got that swing

July 27, 2015

Like Duke Ellington's 1931 jazz standard, the human brain improvises while its rhythm section keeps up a steady beat. But when it comes to taking on intellectually challenging tasks, groups of neurons tune in to one another ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.