In a world of chronic pain, individual treatment possible, research shows

An investigation into the molecular causes of a debilitating condition known as "Man on Fire Syndrome" has led Yale researchers to develop a strategy that may lead to personalized pain therapy and predict which chronic pain patients will respond to treatment.

More than a quarter of Americans suffer from chronic pain and nearly 40 percent do not get effective relief from existing drugs. In many common conditions such as , no clear source of pain is found.

The new study published in the Nov. 13 issue of Nature Communications used sophisticated atomic modeling techniques to search for found in a rare, agonizing, and previously untreatable form of chronic pain called erythromelagia, commonly referred to as "Man on Fire Syndrome." Researchers discovered that one of those mutations seem to predicted whether a patient would respond positively to drug treatment.

"Hopefully we can use this knowledge to help chronic pain patients in more systematic ways, and not depend upon trial and error," said Yang Yang, postdoctoral research associate in the Department of Neurology and lead author of the paper.

Under the leadership of Stephen Waxman, the Bridget Marie Flaherty Professor of Neurology, professor of and of pharmacology, and senior author of the new paper, Yale has been a leader in identifying the Nav1.7 at the base as the regulator of several forms of chronic pain. The members of the Waxman lab were intrigued when it was reported the anti-seizure medicine carbamazepine relieved pain in members of a family suffering from erythromelagia, apparently by working on the Nav 1.7 sodium channel.

Yale researchers conducted an exhaustive and discovered that a specific variant—a difference of a single amino acid among 1,800—in the sodium channel explained why this family responded to the drug. In this new paper, the Yale team developed a three-dimensional structural model of human Nav1.7 channel and systemically looked at different erythromelagia mutations at the atomic level. The Yale team found an additional, second mutation that was sensitive to carbamazepine treatment. In theory, chronic pain patients with this mutation should respond to treatment with carbamazepine.

"This work shows us that the goal of personalized, genomically-guided drug treatment for pain is not unrealistic," Waxman said.

Related Stories

Researchers uncover source of mystery pain

Jun 22, 2011

An estimated 20 million people in the United States suffer from peripheral neuropathy, marked by the degeneration of nerves and in some cases severe pain. There is no good treatment for the disorder and doctors can find no ...

Study discovers unexpected source of diabetic neuropathy pain

May 15, 2012

Nearly half of all diabetics suffer from neuropathic pain, an intractable, agonizing and still mysterious companion of the disease. Now Yale researchers have identified an unexpected source of the pain and a potential target ...

New insight into pain mechanisms

Apr 25, 2012

(Medical Xpress) -- Researchers in the UCL Wolfson Institute for Biomedical Research have made a discovery which could help the development of analgesic drugs able to treat nerve damage-related pain.

Common mechanism underlies many diseases of excitability

Dec 28, 2009

Inherited mutations in voltage-gated sodium channels (Navs) are associated with many different human diseases, including genetic forms of epilepsy and chronic pain. Theodore Cummins and colleagues, at Indiana University School ...

Recommended for you

A better way to track emerging cell therapies using MRIs

Sep 19, 2014

Cellular therapeutics – using intact cells to treat and cure disease – is a hugely promising new approach in medicine but it is hindered by the inability of doctors and scientists to effectively track the movements, destination ...

User comments