Modified antibodies trigger immune response, point to novel vaccine design strategies

January 7, 2013 by Matt Fearer

In an approach with the potential to aid therapeutic vaccine development, Whitehead Institute scientists have shown that enzymatically modified antibodies can be used to generate highly targeted, potent responses from cells of the immune system.

The approach, referred to as "sortagging," relies on the sortase A to modify antibodies to carry various payloads, such as peptides, lipids, fluorophores, and proteins. In this case, the scientists, whose findings are reported online this week in the journal PNAS, attached a variety of small antigens to an antibody directed at the surface of key . Through sortagging, the scientists were quickly able to prepare various antibody-antigen fusions and to deliver the antigens to their intended targets and track them as the immune cells mounted their intricate responses.

"Sortagging is remarkably specific and efficient," says Lee Kim Swee, first author of the PNAS paper and a postdoctoral researcher in the lab of Whitehead Member Hidde Ploegh. "We were able to create 50 different constructs (antibody-protein attachments), which wouldn't have been feasible if we had relied on the more traditional approach of genetic fusion."

Swee and colleagues tested the approach in a of herpes virus, sortagging 19 known viral epitopes to a cell-specific antibody. They created a vaccine cocktail and immunized a group of mice. Upon subsequent re-exposure to the virus, vaccinated mice showed a 10-fold reduction in the amount of circulating virus.

"This is proof of principle that one could in fact use sortagging on antibodies to easily attach a tailored set of , toward which the immune system can be educated," Swee says. "This technique also helps us understand how to design better antibody-based vaccines."

For paper co-author Carla Guimaraes, sortagging's value is bolstered by its flexibility. She likens it to "playing with Legos," because it allows "you to mix and match" proteins of diverse shapes, sizes, and functions. The process can be used, for example, to attach the relatively large green fluorescent protein (GFP) to antibodies without hindering GFP's desirable fluorescing activity or the binding of the conveying antibody to its intended target.

"Imagination is really your only limitation," says Guimaraes, who is also a postdoctoral researcher in the Ploegh lab. "You could for example, use sortase to attach a toxin to an antibody and use that antibody to deliver the toxin to specific cells." Such an approach, she notes, would be an appealing strategy for developing better-tolerated cancer therapies.

Explore further: Biologists deliver neutralizing antibodies that protect against HIV infection in mice

More information: "Sortase-mediated modification of αDEC205 affords optimization of antigen presentation and immunization against a set of viral epitopes" PNAS, online, January 7, 2013

Related Stories

HIV 'superinfection' boosts immune response

March 29, 2012

Women who have been infected by two different strains of HIV from two different sexual partners – a condition known as HIV superinfection – have more potent antibody responses that block the replication of the virus ...

(Antibody) orientation matters

December 10, 2012

The orientation of antibody binding to bacteria can mean life or death to the bug, according to a study published in The Journal of Experimental Medicine on December 10th. These findings may help explain why these bacteria ...

Recommended for you

We've all got a blind spot, but it can be shrunk

August 31, 2015

You've probably never noticed, but the human eye includes an unavoidable blind spot. That's because the optic nerve that sends visual signals to the brain must pass through the retina, which creates a hole in that light-sensitive ...

Biologists identify mechanisms of embryonic wound repair

August 31, 2015

It's like something out of a science-fiction movie - time-lapse photography showing how wounds in embryos of fruit flies heal themselves. The images are not only real; they shed light on ways to improve wound recovery in ...

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

Research identifies protein that regulates body clock

August 26, 2015

New research into circadian rhythms by researchers at the University of Toronto Mississauga shows that the GRK2 protein plays a major role in regulating the body's internal clock and points the way to remedies for jet lag ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.