Researchers use iPSCs to define optimal treatment for managing life-threatening arrhythmias

January 11, 2013
ECG results from a patient with LQTS (bottom), which have a prolonged QT interval, are shown relative to normal ECG results (top). Researchers used iPSCs derived from a young patient with LQTS to determine a course of treatment that helped manage the patient's life-threatening arrhythmias. Credit: Adler, E. 2013. J. Gen. Physiol. doi:10.1085/jgp.201310958 (image adapted from ECG tracings supplied by Robert Pass).

Researchers used induced pluripotent stem cells (iPSCs) derived from a young patient with Long QT syndrome (LQTS), a congenital heart disorder, to determine a course of treatment that helped manage the patient's life-threatening arrhythmias. The results, which appear in The Journal of General Physiology, could lead to improved treatments for LQTS and other channelopathies, diseases caused by disturbed ion channel function.

iPSCs— that have been genetically reprogrammed to function like —provide a valuable tool for studying diseases and developing customized drug therapies. Researchers from Columbia University Medical Center used iPSCs differentiated into cardiomyocytes (iPSCs-CMs) to study the physiological basis for arrhythmias in a four-year-old with LQTS.

The disease, which can cause arrhythmias that lead to seizures and sudden death, is caused by a mutation in any of various genes encoding cardiac ion channels or their associated proteins. In the case at hand, the child had mutation in the SCN5A gene, which encodes a sodium channel, and a common polymorphism in the KCNH2 gene, which encodes a potassium channel.

Using voltage clamp analyses of iPSCs-CMs derived from the affected child and his parents, the researchers determined that his arrhythmias were caused by the SCN5A mutation. They performed further in vitro testing using the iPSCs-CMs to identify the most appropriate regimen for correcting the aberrant activity associated with the defective ion channel.

The results show promise for using in vitro iPSC techniques in the development of individualized drug therapies for patients with LQTS and other channelopathies.

Explore further: Hair-cell-derived patient-specific heart cells for disease modeling and drug screening

More information: Terrenoire, C., et al. 2013. J. Gen. Physiol. 141:61-72.

Related Stories

Recommended for you

Researchers find sleep gene linked to heart failure

November 30, 2015

Researchers at the Stanford University School of Medicine have identified a gene that, when working properly, appears to reduce the risk of heart failure and improve treatment outcomes, highlighting a possible target for ...

No new heart muscle cells in mice after the newborn period

November 5, 2015

A new study from Sweden's Karolinska Institutet shows that new heart muscle cells in mice are mainly formed directly after birth. After the neonatal period the number of heart muscle cells does not change, and A new study ...

Nanotechnology could spur new heart treatment

October 29, 2015

A new nanoparticle developed by University of Michigan researchers could be the key to a targeted therapy for cardiac arrhythmia, a condition that causes the heart to beat erratically and can lead to heart attack and stroke.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.