Green tea and red wine extracts interrupt Alzheimer's disease pathway in cells

Natural chemicals found in green tea and red wine may disrupt a key step of the Alzheimer's disease pathway, according to new research from the University of Leeds.

In early-stage , the researchers identified the process which allows harmful clumps of protein to latch on to , causing them to die. They were able to interrupt this pathway using the purified extracts of from and from .

The findings, published in the , offer potential new targets for developing drugs to treat Alzheimer's disease, which affects some 800,000 people in the UK alone, and for which there is currently no cure.

"This is an important step in increasing our understanding of the cause and progression of Alzheimer's disease," says lead researcher Professor Nigel Hooper of the University's Faculty of Biological Sciences. "It's a misconception that Alzheimer's is a natural part of ageing; it's a disease that we believe can ultimately be cured through finding new opportunities for drug targets like this."

Alzheimer's disease is characterised by a distinct build-up of amyloid protein in the brain, which clumps together to form toxic, sticky balls of varying shapes. These amyloid balls latch on to the surface of in the brain by attaching to proteins on the cell surface called prions, causing the nerve cells to malfunction and eventually die.

"We wanted to investigate whether the precise shape of the amyloid balls is essential for them to attach to the prion receptors, like the way a baseball fits snugly into its glove," says co-author Dr Jo Rushworth. "And if so, we wanted to see if we could prevent the amyloid balls binding to prion by altering their shape, as this would stop the cells from dying."

The team formed amyloid balls in a test tube and added them to human and animal brain cells. Professor Hooper said: "When we added the extracts from red wine and green tea, which recent research has shown to re-shape amyloid proteins, the amyloid balls no longer harmed the nerve cells. We saw that this was because their shape was distorted, so they could no longer bind to prion and disrupt cell function.

"We also showed, for the first time, that when amyloid balls stick to prion, it triggers the production of even more amyloid, in a deadly vicious cycle," he added.

Professor Hooper says that the team's next steps are to understand exactly how the amyloid-prion interaction kills off neurons.

"I'm certain that this will increase our understanding of Alzheimer's disease even further, with the potential to reveal yet more ," he said.

Dr Simon Ridley, Head of Research at Alzheimer's Research UK, the UK's leading dementia research charity, which part-funded the study, said: "Understanding the causes of Alzheimer's is vital if we are to find a way of stopping the disease in its tracks. While these early-stage results should not be a signal for people to stock up on green tea and red wine, they could provide an important new lead in the search for new and effective treatments. With half a million people affected by Alzheimer's in the UK, we urgently need treatments that can halt the disease – that means it's crucial to invest in research to take results like these from the lab bench to the clinic."

More information: Jo V. Rushworth, Heledd H. Griffiths, Nicole T. Watt and Nigel M. Hooper, 'Prion protein-mediated neurotoxity of amyloid-β oligomers requires lipid rafts and the transmembrane LRP1,' Journal of Biological Chemistry, DOI:10.1074/jbc.M112.400358

Related Stories

Alzheimer's prevention role discovered for prions

Jul 03, 2007

A role for prion proteins, the much debated agents of mad cow disease and vCJD, has been identified. It appears that the normal prions produced by the body help to prevent the plaques that build up in the brain to cause Alzheimer’s ...

How culprit Alzheimer's protein wreaks havoc

Mar 28, 2011

(PhysOrg.com) -- How the toxic protein, amyloid, sets off a chain of events that leads to brain cell death during Alzheimer's disease is described in new detail in a study from the University of Bristol published ...

Researchers find new piece in Alzheimer's puzzle

Feb 25, 2009

Yale researchers have filled in a missing gap on the molecular road map of Alzheimer's disease. In the Feb. 26 issue of the journal Nature, the Yale team reports that cellular prion proteins trigger the process by which ...

Shedding light on Alzheimer's

May 25, 2011

Cardiff researchers have uncovered a molecular interaction that could not only help understand the causes of Alzheimer’s, but also shed light on how life began.

Recommended for you

Improving the quality of dementia care

Nov 20, 2014

Healthcare workers and facilitators caring for persons suffering with dementia have expressed their satisfaction with new forms of mobile phone apps which are designed to assist support carers in residential homes to be more ...

Brain receptor cell could be new target for Alzheimer's

Nov 18, 2014

Blocking a key receptor in brain cells that is used by oxygen free radicals could play a major role in neutralizing the biological consequences of Alzheimer's disease, according to researchers at Temple University.

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.