Researchers develop tool for reading the minds of mice (w/ Video)

(Medical Xpress)—If you want to read a mouse's mind, it takes some fluorescent protein and a tiny microscope implanted in the rodent's head.

Stanford scientists have demonstrated a technique for observing hundreds of neurons firing in the brain of a live , in real time, and have linked that activity to long-term information storage. The unprecedented work could provide a useful tool for studying new therapies for neurodegenerative diseases such as Alzheimer's.

The researchers first used a gene therapy approach to cause the mouse's neurons to express a that was engineered to be sensitive to the presence of calcium ions. When a neuron fires, the cell naturally floods with . Calcium stimulates the protein, causing the entire cell to fluoresce bright green.

A tiny microscope implanted just above the mouse's hippocampus – a part of the brain that is critical for spatial and – captures the light of roughly 700 neurons. The microscope is connected to a camera chip, which sends a digital version of the image to a computer screen.

The computer then displays near real-time video of the mouse's as a mouse runs around a small enclosure, which the researchers call an arena.

This video is not supported by your browser at this time.

The neuronal firings look like tiny green fireworks, randomly bursting against a black background, but the scientists have deciphered clear patterns in the chaos.

"We can literally figure out where the mouse is in the arena by looking at these lights," said Mark Schnitzer, an associate professor of biology and of applied physics and the senior author on the paper, recently published in the journal Nature Neuroscience.

When a mouse is scratching at the wall in a certain area of the arena, a specific neuron will fire and flash green. When the mouse scampers to a different area, the light from the first neuron fades and a new cell sparks up.

"The hippocampus is very sensitive to where the animal is in its environment, and different cells respond to different parts of the arena," Schnitzer said. "Imagine walking around your office. Some of the neurons in your hippocampus light up when you're near your desk, and others fire when you're near your chair. This is how your brain makes a representative map of a space."

The group has found that a mouse's fire in the same patterns even when a month has passed between experiments. "The ability to come back and observe the same cells is very important for studying progressive brain diseases," Schnitzer said.

For example, if a particular neuron in a test mouse stops functioning, as a result of normal neuronal death or a neurodegenerative disease, researchers could apply an experimental therapeutic agent and then expose the mouse to the same stimuli to see if the neuron's function returns.

Although the technology can't be used on humans, mouse models are a common starting point for new therapies for human , and Schnitzer believes the system could be a very useful tool in evaluating pre-clinical research.

The work was published Feb. 10 in the online edition of Nature Neuroscience. The researchers have formed a company to manufacture and sell the device.

More information: dx.doi.org/10.1038/nn.3329

Related Stories

Calcium reveals connections between neurons

Oct 17, 2012

A team led by MIT neuroscientists has developed a way to monitor how brain cells coordinate with each other to control specific behaviors, such as initiating movement or detecting an odor.

Learning left from right

Dec 21, 2011

(Medical Xpress) -- Pop psychology assertions about left-brain/right-brain differences are pretty much tosh. Our personalities are not dominated by a battle between the creative skills residing in one half ...

Recommended for you

New learning mechanism for individual nerve cells

46 minutes ago

The traditional view is that learning is based on the strengthening or weakening of the contacts between the nerve cells in the brain. However, this has been challenged by new research findings from Lund University in Sweden. ...

USC memory scientist Richard Thompson dies at 84

16 hours ago

Richard F. Thompson, the University of Southern California neuroscientist whose experiments with rabbits led to breakthrough discoveries on how memories are physically stored in the brain, has died. He was 84.

Modeling shockwaves through the brain

17 hours ago

Since the start of the military conflicts in Iraq and Afghanistan, more than 300,000 soldiers have returned to the United States with traumatic brain injury caused by exposure to bomb blasts—and in particular, ...

User comments