Developing our sense of smell: Biologists pinpoint the origin of olfactory nerve cells

March 25, 2013 by Katie Neith
This is an image of 2.5-um thick optical slice through the nose of a zebrafish embryo in which microvillous (green) cells also are stained with a neuronal marker (red) demonstrating their neuronal identify. nuclei are stained in blue. scale bar: 30 2:55 Mm. Credit: Ankur Saxena/Caltech

When our noses pick up a scent, whether the aroma of a sweet rose or the sweat of a stranger at the gym, two types of sensory neurons are at work in sensing that odor or pheromone. These sensory neurons are particularly interesting because they are the only neurons in our bodies that regenerate throughout adult life—as some of our olfactory neurons die, they are soon replaced by newborns. Just where those neurons come from in the first place has long perplexed developmental biologists.

Previous hypotheses about the origin of these olfactory have given credit to that develop into skin or the central nervous system, where ear and eye sensory neurons, respectively, are thought to originate. But biologists at the California Institute of Technology (Caltech) have now found that neural-crest stem cells—multipotent, migratory cells unique to vertebrates that give rise to many structures in the body such as and smooth muscle—also play a key role in building olfactory sensory neurons in the nose.

"Olfactory neurons have long been thought to be solely derived from a thickened portion of the ectoderm; our results directly refute that concept," says Marianne Bronner, the Albert Billings Ruddock Professor of Biology at Caltech and corresponding author of a paper published in the journal eLIFE on March 19 that outlines the findings.

The two main types of in the olfactory system are ciliated neurons, which detect volatile scents, and microvillous neurons, which usually sense pheromones. Both of these types are found in the tissue lining the inside of the and transmit sensory information to the for processing.

In the new study, the researchers showed that during embryonic development, neural-crest stem cells differentiate into the microvillous neurons, which had long been assumed to arise from the same source as the odor-sensing ciliated neurons. Moreover, they demonstrated that different factors are necessary for the development of these two types of neurons. By eliminating a gene called Sox10, they were able to show that formation of microvillous neurons is blocked whereas ciliated neurons are unaffected.

They made this discovery by studying the development of the olfactory system in zebrafish—a useful model organism for developmental biology studies due to the optical clarity of the free-swimming embryo. Understanding the origins of olfactory neurons and the process of neuron formation is important for developing therapeutic applications for conditions like anosmia, or the inability to smell, says Bronner.

"A key question in developmental biology—the extent of neural-crest stem cell contribution to the —has been addressed in our paper by multiple lines of experimentation," says Ankur Saxena, a postdoctoral scholar in Bronner's laboratory and lead author of the study. "Olfactory neurons are unique in their renewal capacity across species, so by learning how they form, we may gain insights into how neurons in general can be induced to differentiate or regenerate. That knowledge, in turn, may provide new avenues for pursuing treatment of neurological disorders or injury in humans."

Next, the researchers will examine what other genes, in addition to Sox10, play a role in the process by which neural-crest differentiate into microvillous neurons. They also plan to look at whether or not neural-crest cells give rise to new microvillous neurons during olfactory regeneration that happens after the embryonic stage of development.

Explore further: Researcher finds elderly lose ability to distinguish between odors

More information: "Sox10-dependent neural crest origin of olfactory microvillous neurons in zebrafish," elife.elifesciences.org/

Related Stories

No new neurons in the human olfactory bulb

May 24, 2012

(Medical Xpress) -- Research from Karolinska Institutet shows that the human olfactory bulb - a structure in the brain that processes sensory input from the nose - differs from that of other mammals in that no new neurons ...

Recommended for you

Action recognition without mirror neurons

April 29, 2016

When someone stands opposite us and purposefully raises their arm to make some kind of movement, our brain asks itself whether they intend to attack us or, perhaps, simply greet us. Scientists from the Department of Human ...

Subtle chemical changes in brain can alter sleep-wake cycle

April 28, 2016

A study out today in the journal Science sheds new light on the biological mechanisms that control the sleep-wake cycle. Specifically, it shows that a simple shift in the balance of chemicals found in the fluid that bathes ...

Turn left! How myosin-Va helps direct neuron growth

April 28, 2016

Researchers at the RIKEN Brain Science Institute in Japan have discovered a protein complex that helps direct the growth of axons—the parts of neurons that make up our nerves, connecting our senses and muscles to the brain ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.