Detecting circulating tumor cells

March 25, 2013

A proof-of-concept device is nearly perfect in separating breast cancer cells from blood.

About 1 in 4 deaths in the United States are due to cancer, but primary tumors are rarely fatal. Instead, it's when tumors metastasize that cancer becomes so deadly. To help patients and physicians make , teams of researchers have been working on various methods to detect cancer's spread – via the bloodstream – before secondary tumors develop. Now, one team reports a nearly perfect method for separating from blood. They describe their proof-of-concept device in a paper accepted for publication in Biomicrofluidics.

Detecting and separating (CTCs) is like finding the proverbial needle in a haystack: as few as one in a billion cells in a patient's bloodstream may be a CTC. Separation techniques vary widely, relying on differences in chemical, paramagnetic, or to distinguish CTCs from blood cells, or using mechanical sieves to cull the larger CTCs from the smaller blood cells. More recently, researchers have applied forces to fluid containing both and CTCs, using differences in inertia to sort cells. The technique, called "hydrodynamic sorting," is faster and easier than other sorting techniques. Like other mechanical techniques, it also allows researchers to collect viable cells after sorting them.

The team employed hydrodynamic sorting to develop their new device, called a multi-stage, multi-orifice flow fractionation (MS-MOFF) system. A previous design by the same team had just a single stage for applying hydrodynamic forces, but by adding an additional stage – so the output of the first stage becomes the input to the second stage – the researchers improved the separation efficiency of CTCs from 88.8% to 98.9%. Required pretreatment of the samples still makes MS-MOFF a proof-of-concept device, but the researchers suggest several ways to overcome such limitations and so make it useful for clinical applications.

Explore further: Circulating tumor cells not linked to survival in newly diagnosed inflammatory breast cancer

More information: "Continual collection and re-separation of circulating tumor cells (CTCs) from blood using multi-stage multi-orifice flow fractionation," is published in Biomicrofluidics.

Related Stories

Recommended for you

Malaria vaccine provides hope for a general cure for cancer

October 13, 2015

The hunt for a vaccine against malaria in pregnant women has provided an unexpected side benefit for Danish researchers, namely what appears to be an effective weapon against cancer. The scientists behind the vaccine aim ...

Breast cancer drug beats superbug

October 13, 2015

Researchers at University of California, San Diego School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences have found that the breast cancer drug tamoxifen gives white blood cells a boost, better enabling ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.