Researchers discover that errors in RNA splicing lead to a class of neurological disorders 

(Medical Xpress)—Researchers have found that missteps in a basic cellular process, RNA splicing, is the culprit behind a class of rare neurological disorders manifested by intellectual disability and stunted development.

In , nascent are modified and edited so they can then go about the business of synthesizing proteins. Incorrect splicing of RNA, however, impairs .

Qingqing Wang, a doctoral student in systems biology at Harvard Medical School, found that genome-wide splicing errors were caused by mutations in a gene called PQBP1, which encodes a protein that has previously been linked to Renpenning syndrome, an X-linked .

"This is one of the first studies to show the effect of RNA processing on neural defects across the whole genome," said Pamela Silver, HMS professor of systems biology and senior study author.

These findings were published on March 15 in the journal Genes and Development.

Disease comprises of a group of that cause a series of . In particular, Wang and Silver studied Renpenning syndrome, a disease characterized by an unusually small head circumference, mental disability and trouble with movement and coordination. Since it is genetic and rare, only about 10 to 15 families worldwide are known to have this disease.

RNA splicing is one of the many ways the human genome achieves diversity. In some cases, though, this diversity comes at a price. In the case of this particular disorder, when mutations in PQBP1 caused incorrect RNA splicing, the outcome was stunted growth of neuronal dendrites, the tree-like structures at the ends of neurons that conduct .

Wang came across the PQBP1 protein while screening for molecules that affected RNA splicing in apoptosis, or . Upon further investigation within neurons in particular, Wang was able to isolate more than 500 different splicing events associated with PQBP1. With nearly all these events, Wang found functional defects downstream.

"It was really heroic, the work that Wang conducted, since she's never before worked with neurons," said Silver.

The neurons were provided by Michael Greenberg, the Nathan Marsh Pusey Professor of Neurobiology at HMS and the Department Chair of Neurobiology. According to Wang, "I had a seven- to fourteen-day window with a batch of cells and the tools had to be very refined in order to work with them."

This new frontier for Wang also yielded a technical first: Wang developed a new genome-wide method to analyze how the process of alternative RNA splicing can be affected by various factors.

Researchers were particularly surprised that the malfunctioning of PQBP1, and hence the cause of incorrect RNA splicing, pointed to a gene called NCAM1.

"The resulting RNA can be spliced in two different ways," explained Wang, "each creating a different type of protein, and each protein differing from the other by only about ten amino acids."

If the splicing creates the shorter version of the protein, neurons generate more and longer dendrites. If the longer version of the protein is produced, however, neurons generate fewer and shorter dendrites.

As such, if PQBP1 is mutated, it results in incorrect splicing downstream, especially causing the RNA encoded by NCAM1 to be spliced into the longer form. These errors result in defects in neuronal dendrites, a distinctive feature of intellectual disability disorders.

"This process is a success story for ," said Silver. "The examination of the cell and its components as a whole and then narrowing down to the specific gene is one of the discipline's facets. We weeded through 600 to 700 affected genes and were able to show that NCAM1 was consistently the affected gene in question."

The next step would be to test other possible targets for the protein PQBP1. "This way, maybe we can identify a possible therapeutic target," said Wang. "But knowing the mechanisms behind rare diseases is beneficial in itself because they could be generalizable to other neurological diseases."

More information: genesdev.cshlp.org/content/27/6/615.abstract

Related Stories

Dark matter made visible before the final cut

Jan 07, 2013

Research findings from the University of North Carolina School of Medicine are shining a light on an important regulatory role performed by the so-called dark matter, or "junk DNA," within each of our genes.

New mechanism in the regulation of human genes

Jul 14, 2011

Scientists at the Technical University of Munich and the Helmholtz Zentrum Muenchen and along with their colleagues from the European Molecular Biology Laboratory (EMBL) in Heidelberg and the Centre for Genomic Regulation ...

Researchers find mutation causing neurodegeneration

Jan 19, 2012

A Jackson Laboratory research team led by Professor and Howard Hughes Medical Investigator Susan Ackerman, Ph.D., has discovered a defect in the RNA splicing process in neurons that may contribute to neurological disease.

Recommended for you

A nucleotide change could initiate fragile X syndrome

17 hours ago

Researchers reveal how the alteration of a single nucleotide—the basic building block of DNA—could initiate fragile X syndrome, the most common inherited form of intellectual disability. The study appears ...

Gene clues to glaucoma risk

Aug 31, 2014

Scientists on Sunday said they had identified six genetic variants linked to glaucoma, a discovery that should help earlier diagnosis and better treatment for this often-debilitating eye disease.

Mutation disables innate immune system

Aug 29, 2014

A Ludwig Maximilian University of Munich team has shown that defects in the JAGN1 gene inhibit the function of a specific type of white blood cells, and account for a rare congenital immune deficiency that ...

Study identifies genetic change in autism-related gene

Aug 28, 2014

A new study from Bradley Hospital has identified a genetic change in a recently identified autism-associated gene, which may provide further insight into the causes of autism. The study, now published online in the Journal of ...

NIH issues finalized policy on genomic data sharing

Aug 27, 2014

The National Institutes of Health has issued a final NIH Genomic Data Sharing (GDS) policy to promote data sharing as a way to speed the translation of data into knowledge, products and procedures that improve health while ...

User comments