Team makes breakthrough in search for neurodegenerative disease treatments

April 10, 2013

A significant breakthrough has been made by scientists at The University of Manchester towards developing an effective treatment for neurodegenerative diseases such as Huntington's, Alzheimer's and Parkinson's.

Researchers at the Manchester Institute of Biotechnology have detailed how an enzyme in the brain interacts with an exciting drug-like lead compound for Huntington's Disease to inhibit its activity. Their findings demonstrate that it can be developed as an effective treatment for . The research is published in the journal Nature.

Working with colleagues at the University of Leicester and the University of Lisbon in Portugal, the researchers identified the molecular structure of the enzyme kynurenine 3-monooxygense (KMO), which is found in the . It took five years for the team to establish the crystal structure of KMO – the first time it's ever been done.

The scientists then studied how the compound UPF 648 binds incredibly tightly to the enzyme to act as an inhibitor. Previous studies with animal models of neurodegenerative disease have showed that switching off the through drug binding should be effective in the treatment of .

Professor Nigel Scrutton who led the study said: "UPF 648 works very well as an inhibitor of enzyme activity. However, in its current form it does not pass into the brain from the blood. The search is now on for related compounds that can both inhibit the enzyme and pass into the brain."

He continues: "Our research detailing the of the enzyme now enables a search for new KMO inhibitors that are able to cross the blood-brain barrier. This provides real hope for developing to target neurodegenerative diseases such as Huntington's, Alzheimer's and Parkinson's diseases."

Dr Flaviano Giorgini, the team's neurogeneticist from the University of Leicester, said: "This is a big move forward for the development of new KMO inhibiting drugs. It is hoped that such compounds may ultimately be tested in clinical trials and prove beneficial for patients."

The findings from this research will now be used in the search for more effective treatments for Huntington's Disease.

Professor Sarah Tabrizi is the head of the Huntington's disease research team at University College London's Institute for Neurology. Commenting on the research she says: "Unlocking the crystal structure of KMO is a real boost to our efforts to find treatments for this devastating disease. It provides a solid basis for the optimisation of inhibitor drugs like UPF 648 that are being developed by the global Huntington's disease research community. KMO is one of our top drug targets, and the is a significant step along our roadmap to clinical trials of KMO inhibitors in patients."

Cath Stanley, Chief Executive of the Huntington's Disease Association also welcomed the findings: "This research is a really exciting piece of the jigsaw that enables us to understand a little more and takes us a step closer to being able to provide an for Huntington's Disease."

Explore further: Researchers announce Huntington's disease breakthrough

More information: "Structural basis of kynurenine 3-monooxygenase inhibition" Nature, 2013. dx.doi.org/10.1038/nature12039

Related Stories

Recommended for you

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

Research identifies protein that regulates body clock

August 26, 2015

New research into circadian rhythms by researchers at the University of Toronto Mississauga shows that the GRK2 protein plays a major role in regulating the body's internal clock and points the way to remedies for jet lag ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.