Researchers identify target to prevent hardening of arteries

This shows Dwight A. Towler, M.D., Ph.D., with scientists in his lab at Sanford-Burnham Medical Research Institute at Lake Nona. Credit: Sanford-Burnham Medical Research Institute

The hardening of arteries is a hallmark of atherosclerosis, an often deadly disease in which plaques, excessive connective tissue, and other changes build up inside vessel walls and squeeze off the flow of oxygen-rich blood throughout the body. Now, researchers at Sanford-Burnham Medical Research Institute have described the molecular and cellular pathway that leads to this hardening of the arteries—and zeroed in on a particularly destructive protein called Dkk1.

Their study was published online today by Arteriosclerosis, Thrombosis, and Vascular Biology. The findings suggest that the development of drug therapies to selectively inhibit endothelial Dkk1 signaling may help limit arteriosclerotic disease.

"I think the strategy going forward is to find ways to modulate or inhibit Dkk1 function, but we're going to have to do it in a time-sensitive and cell type- specific fashion," said Dwight A. Towler, M.D., Ph.D., director of Sanford-Burnham's Cardiovascular Program and senior author of the study. "In diseases such as chronic renal deficiency or diabetes, where unregulated Dkk1 signaling can be destructive, it may be appropriate to restrain the action of Dkk1 for a prolonged period of time," Towler added.

When the inflammatory response goes awry

The Dkk1 protein, when functioning normally, is important for aiding in wound repair. But inflammatory responses triggered inside after the onset of hyperglycemia, and other metabolic injuries associated with diseases like diabetes, can trigger prolonged and destructive Dkk1 signaling.

Dkk1 triggers the conversion of cells that line the interior surface of artery walls, called endothelial cells, into , which can direct connective tissue formation. This process is known as the endothelial-mesenchymal transition. The resulting fibrosis inside arterial walls leads to a dangerous stiffening of vessels that increases systolic blood pressure and ultimately impairs distal blood flow.

Drug therapy strategies to target Dkk1

Drug therapies should focus on the places where Dkk1 inhibition is called for—the arteries, in the case of atherosclerosis—because healthy Dkk1 signaling regulates normal processes such as cartilage and joint remodeling. To enable this targeted approach, Towler said he hopes to develop a therapeutic drug that would include a Dkk1 inhibitor and a peptide—a short chain of amino acids—engineered to target specific vascular tissues.

Longtime Sanford-Burnham researcher and past president Erkki Ruoslahti, M.D., Ph.D., developed these homing peptides, which have been used to deliver cancer drugs to where they're most needed. "If we can target a Dkk1 antagonist to using the Ruoslahti peptides—or a similar strategy—that would be very, very powerful," Towler said.

Dkk1 is from a family of molecules that arose during the development of vertebrates and is involved in heart formation in embryos. Researchers initially thought the protein's only role was to inhibit a molecular pathway known as canonical Wnt signaling, which controls cell differentiation. However, these new data identify surprising "cross-talk" between Dkk1 and a bone-inducing pathway previously shown to promote the endothelial-mesenchymal transition.

Towler and his team will continue to study Dkk1 and Wnt signaling to identify potential drug targets to prevent the hardening of arteries in patients with atherosclerosis.

Related Stories

Protein could improve recovery from heart attacks

date Apr 11, 2011

Angiogenesis, the development of new blood vessels, is required during embryonic development and wound healing, as well as during disease processes such as tumor growth. The signals that direct angiogensis are incompletely ...

Lundbeck profit jumps but warns on generic pressure

date May 01, 2013

Danish pharmaceutical company Lundbeck Wednesday posted a higher than expected quarterly net profit, helped by the expansion of an alliance with Japan's Otsuka and the divestment of a US portfolio of non-core products.

Recommended for you

A-fib recurrence common five years after ablation

date 17 hours ago

(HealthDay)—Most patients with atrial fibrillation (AF) and systolic heart failure who undergo ablation have AF recurrence at five years, according to a study published in the April issue of the Journal of ...

Applied physics helps decipher the causes of sudden death

date 21 hours ago

Sudden cardiac death accounts for approximately 10% of natural deaths, most of which are due to ventricular fibrillation. Each year, it causes 300,000 deaths in the United States and 20,000 in Spain. Researchers have demonstrated ...

Cognitive problems are common after cardiac arrest

date 22 hours ago

Half of all patients who survive a cardiac arrest experience problems with cognitive functions such as memory and attention. This has been shown by a major international study led from Lund University. Surprisingly, however, ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.