Scientists identify potential drug target for treatment-resistant anemias

June 9, 2013 by Nicole Giese Rura

Researchers at Whitehead Institute have identified a protein that is the target of glucocorticoids, the drugs that are used to increase red blood cell production in patients with certain types of anemia, including those resulting from trauma, sepsis, malaria, kidney dialysis, and chemotherapy. The discovery could spur development of drugs capable of increasing this protein's production without causing the severe side effects associated with glucocorticoids.

"This research is medically important, and we are using it to find a better way to increase the production of for these patients," says Harvey Lodish, who is a Whitehead Institute Founding Member and a professor of biology at MIT. "It is also a new insight into how self-renewal in can be controlled, and a new way to think about how we can use an to maintain stem and ."

Anemia occurs due to a breakdown in erythropoiesis, the multi-step process that creates red . Some common can be treated with a recombinant form of the hormone erythropoietin (EPO), which normally stimulates red blood-cell production at a fairly late stage of erythropoiesis.

However, certain anemias fail to respond to EPO, creating a large unmet medical need. In the case of Diamond Blackfan anemia (DBA), patients lack a sufficient number of EPO-responsive cells. Instead, glucocorticoids such as prednisone or are used to treat DBA and other anemias resistant to EPO by increasing the numbers of the later progenitor cells that respond to EPO. These drugs cause a host of negative side effects, including decreased , immunosuppression, stunted growth, and cataracts, all of which are particularly burdensome for young patients.

Earlier work in the Lodish lab determined that glucocorticoids increase red blood cell production by acting on early progenitors of red blood cells, called burst forming unit-erythroids (BFU-Es). During erythropoiesis, BFU-Es produce later progenitors called colony forming unit-erythroids (CFU-Es), which are then stimulated by EPO to generate the pro-erythroblasts that eventually become red blood cells. By dividing numerous times before maturing, BFU-Es have a limited ability to self-renew. After exposure to glucocorticoids, BFU-Es divide more times than usual, which ultimately increases the total number of red blood cells they produce.

To determine how glucocorticoids prolong BFU-Es' self-renewing phase, Lingbo Zhang, a graduate student in the Lodish lab, studied the drugs' effects in mouse BFU-Es. His work is described online this week on the website of the journal Nature.

Zhang determined that glucocorticoids increase the expression of the protein Zfp36l2, which binds to messenger RNAs (mRNAs) that otherwise would push BFU-Es to differentiate. Under the sway of Zfp36l2, BFU-Es undergo additional rounds of self-renewing cell divisions, forming eventually more EPO- responsive CFU-Es and that can increase red blood cell production by up to 20-fold in vitro.

"It's amazing that the body can trigger this process using one essential gene," says Zhang. "But this is still the very beginning. What glucocorticoids are doing in these cells has been like a black box and now we have one piece of what's happening in that box. And that will help us toward our goal to find a hormone or drug that could be used as a replacement for glucocorticoids."

Explore further: The doping-drug Epo has an impact in the brain

More information: ZFP36L2 is required for self-renewal of early burst-forming unit erythroid progenitors, Nature, online on June 9, 2013. DOI: 10.1038/nature12215

Related Stories

The doping-drug Epo has an impact in the brain

June 11, 2012

Sportsmen and women dope with the blood hormone Epo to enhance their performance. Researchers from the University of Zurich now discovered by animal testing that Epo has a performance-enhancing effect in the brain shortly ...

Recommended for you

Researchers grow retinal nerve cells in the lab

November 30, 2015

Johns Hopkins researchers have developed a method to efficiently turn human stem cells into retinal ganglion cells, the type of nerve cells located within the retina that transmit visual signals from the eye to the brain. ...

Shining light on microbial growth and death inside our guts

November 30, 2015

For the first time, scientists can accurately measure population growth rates of the microbes that live inside mammalian gastrointestinal tracts, according to a new method reported in Nature Communications by a team at the ...

Functional human liver cells grown in the lab

November 26, 2015

In new research appearing in the prestigious journal Nature Biotechnology, an international research team led by The Hebrew University of Jerusalem describes a new technique for growing human hepatocytes in the laboratory. ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.