Duke research team identifies a potent growth factor for blood stem cells

October 23, 2012

Duke Medicine researchers studying the interaction of blood stem cells and the niche where they reside have identified a protein that may be a long-sought growth factor for blood stem cells.

The protein is called pleiotrophin, and is produced by cells that line the in bone marrow. In mouse studies conducted by the Duke researchers, the helps transplanted blood locate to the bone marrow, where they produce mature red and in the body.

The finding, reported in the Oct. 18, 2012, issue of the journal Cell Reports, could lead to new treatments that speed recovery of healthy for patients receiving or undergoing bone marrow and .

"Our hypothesis is that pleitrophin has the potential to promote blood stem cell growth in the manner that stimulates precursors," said principal investigator John Chute, M.D., professor of Medicine, Pharmacology & Cancer Biology.

Many patients have benefitted from the discovery of erythropoietin (EPO), which stimulates the body to produce mature red blood cells. A synthetic form of EPO is commonly used to treat patients with anemia. Similarly, granulocyte colony stimulating factor (Neupogen), a growth factor for white blood cells, is used to remedy low white blood cell counts that often result from chemotherapy or radiation treatments for cancer.

"A principle objective in hematology for several decades is to identify a growth factor capable of promoting blood stem cells to grow without differentiating," Chute said.

Pleiotrophin may be one such growth factor. Pleiotrophin, which means "many forms," appears to make blood stem cells grow and promote production of all the mature blood lineages that are derived from the blood stem cell. Previously, Chute and his colleagues had shown that treatment with pleiotrophin promoted the expansion of mouse and human blood stems cells in cultures that were capable of engrafting in transplanted mice.

In the new research, lead researcher Heather Himburg, Ph.D., assistant professor of medicine, and Chute's research team showed that cells lining blood vessels in the bone marrow produce pleiotrophin, where it acts as a homing device to attract and retain stem cells. The researchers then demonstrated that genetically engineered mice missing the gene encoding pleiotrophin had decreased numbers of stem cells in their bone marrow, and had difficulty making new blood cells if depleted.

When the researchers treated normal mice with an anti-pleiotrophin antibody, it had the surprising effect of causing existing blood stem cells to be released from bone marrow and enter the blood stream. The finding was particularly exciting to the researchers, as the effect was similar to that observed when granulocyte-colony stimulating factor is used clinically to mobilize stem cells from a donor's bone marrow for use in blood stem cell transplants.

"The discoveries together suggest two possible therapeutic uses," said Chute. "Treatment with pleiotrophin may prove useful in helping patients more quickly regenerate their own blood forming cells after chemotherapy or transplant. Second, anti-pleiotrophin antibodies may be useful in mobilizing stem cells to the peripheral blood."

The researchers are planning additional studies to understand how the homing system works and how pleiotrophin interacts with other growth factors to regulate blood stem cell function in the body. Given that some prior studies have suggested that pleiotrophin can promote cancer cell growth, human safety studies will be crucial, Chute said.

Explore further: No survival advantage with peripheral blood stem cells versus bone marrow

Related Stories

No survival advantage with peripheral blood stem cells versus bone marrow

October 19, 2012
(Medical Xpress)—Claudio Anasetti, M.D., chair of the Department of Blood & Marrow Transplant at Moffitt Cancer Center, and colleagues from 47 research sites in the Blood and Marrow Transplant Clinical Trials Network conducted ...

Recommended for you

Hibernating ground squirrels provide clues to new stroke treatments

November 17, 2017
In the fight against brain damage caused by stroke, researchers have turned to an unlikely source of inspiration: hibernating ground squirrels.

Age and gut bacteria contribute to multiple sclerosis disease progression

November 17, 2017
Researchers at Rutgers Robert Wood Johnson Medical School published a study suggesting that gut bacteria at young age can contribute to multiple sclerosis (MS) disease onset and progression.

Molecular guardian defends cells, organs against excess cholesterol

November 16, 2017
A team of researchers at the Harvard T. H. Chan School of Public Health has illuminated a critical player in cholesterol metabolism that acts as a molecular guardian in cells to help maintain cholesterol levels within a safe, ...

Prototype ear plug sensor could improve monitoring of vital signs

November 16, 2017
Scientists have developed a sensor that fits in the ear, with the aim of monitoring the heart, brain and lungs functions for health and fitness.

Ancient enzyme could boost power of liquid biopsies to detect and profile cancers

November 16, 2017
Scientists are developing a set of medical tests called liquid biopsies that can rapidly detect the presence of cancers, infectious diseases and other conditions from only a small blood sample. Researchers at The University ...

FDA to crack down on risky stem cell offerings

November 16, 2017
U.S. health authorities announced plans Thursday to crack down on doctors pushing stem cell procedures that pose the gravest risks to patients amid an effort to police a burgeoning medical field that previously has received ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.