How the body aids and abets the spread of cancer

July 1, 2013
Dr. Lorenzo Ferri (left) and Dr. Johatna Cools-Lartigue (right) are looking at a human stomach cancer specimen. Credit: Pierre Dubois, McGill University Health Centre (MUHC)

The very system that is meant to protect the body from invasion may be a traitor. These new findings of a study, led by investigators at the Research Institute of the McGill University Health Centre (RI-MUHC), reveal that infection-fighting white blood cells play a role in activating cancer cells and facilitating their spread to secondary tumours. This research, published today in the Journal of Clinical Investigation has significant implications for both the diagnosis and treatment of cancer.

"We are the first to identify this entirely new way that cancer spreads," says senior author Dr. Lorenzo Ferri, MUHC director of the Division of Thoracic Surgery and the Upper Gastrointestinal (GI) Cancer Program. "What's equally exciting is medications already exist that are being used for other non-cancer diseases, which may prevent this mechanism of cancer spread or metastasis." According to Dr. Ferri, the next steps are to validate if these medicines will work for the prevention and treatment of , and then to determine the optimal timing and dosing.

Linking infection, inflammation and metastasis

"Our first clue of this association was from our previous research, which showed that severe infection in cancer patients after surgery results in a higher chance that patients will have the cancer return in the form of cancer metastasis," says Dr. Ferri who is also an Associate Member of the Rosalind and Morris Goodman Cancer Research Centre and Associate Professor in the Department of Oncology at McGill University. "This led us to investigate the cellular players in the infection, notably neutrophils, the first and most numerous of the white that are used by the immune system fight off infections."

Dr. Ferri and his colleagues from McGill University and the University of Calgary used both and mouse models of cancer to show that there is a relationship between infection, a white blood cell response (inflammation) and metastasis. A web-like network called Neutrophils Extracellular Traps (NETs), is produced by (neutrophils) in response to an infection and this normally traps and kills invading pathogens, such as bacteria.

How the body aids and abets the spread of cancer
Cancer cells (in red) are trapped by NETs (in green) developed by white blood cells (in blue). Credit: Drs. Jonathan Cools-Lartigue and Lorenzo Ferri

"We demonstrated that in the case of infected animals with cancer, the neutrophil web (NETs) also trapped circulating cancer cells," adds Dr. Jonathan Cools-Lartigue, first author of the study, and a PhD student from the LD MacLean Surgical Research Laboratories at McGill University. "Instead of killing the cancer cells, these webs activated the and made them more likely to develop secondary tumours, or metastasis."

No web equals better outcome

The researchers went one step further and showed that breaking down the neutrophil web is achievable by using certain medication. Furthermore, in mice with cancer, markedly less tumour growth and metastasis occurred after the medication was administered. This finding was true for a number of different cancer types, suggesting that neutrophil webs may be a common pathway involved in the spreading of many cancers.

"Our study reflects a major change in how we think about progression," says Dr. Ferri. "And, more importantly, how we can treat it."

More information: Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis, J Clin Invest. doi:10.1172/JCI67484

Related Stories

New signaling pathway linked to breast cancer metastasis

April 2, 2012

Lymph nodes help to fight off infections by producing immune cells and filtering foreign materials from the body, such as bacteria or cancer cells. Thus, one of the first places that cancer cells are found when they leave ...

Targeting protein could prevent metastasis of cancer cells

November 14, 2012

(Medical Xpress)—Researchers at King's College London have uncovered a protein required by cancer cells to spread to other parts of the body, highlighting it as a potential target for future treatments to prevent secondary ...

Researchers discover master regulator in cancer metastasis

June 10, 2013

In the process of metastasis, the movement of cancer cells to different parts of the body, a specific master regulator gene plays a central role: a transcription factor named Sox4 activates a sequence of genes and triggers ...

Recommended for you

New treatment options for a fatal leukemia

July 27, 2015

In industrialized countries like in Europe, acute lymphoblastic leukemia is the most common form of cancer in children. An international research consortium lead by pediatric oncologists from the Universities of Zurich and ...

Modified DNA building blocks are cancer's Achilles heel

July 22, 2015

In studying how cells recycle the building blocks of DNA, Ludwig Cancer Research scientists have discovered a potential therapeutic strategy for cancer. They found that normal cells have highly selective mechanisms to ensure ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.