Researchers explore new treatments for a leading genetic cause of infant deaths

Researchers at Iowa State University have identified an RNA structure in humans that could lead to a new treatment for spinal muscular atrophy, the leading genetic cause of death in babies and young children.

Ravindra Singh, a professor of in the ISU College of Veterinary Medicine, is the lead author of a paper published this week in the journal Nucleic Acids Research that details the discovery of a novel that could be modified by medication, leading to new treatment possibilities for the disease.

Spinal results from the loss or mutation of a gene called Survival Motor Neuron 1, often referred to as SMN1. If SMN1 is deleted or doesn't function properly, not enough SMN protein is produced, giving rise to the disease.

Luckily, the vast majority of humans have a nearly identical gene, referred to as SMN2, which can function as a substitute. But a critical portion of SMN2 is sometimes erroneously removed during the process known as splicing, or when pre-mRNA is turned into mRNA by getting rid of non-functioning parts of the gene.

In the new paper, Singh and his colleagues have discovered an RNA structure exclusively formed by intronic sequences, or sequences that are removed during splicing. By targeting that structure, it may be possible to develop new treatments that prevent the mistake in the splicing process that causes the loss of function of SMN2, Singh said. If so, this is the first time a deep intronic structure can be targeted for therapy.

"About a quarter of a person's genome is made up of introns, or non-coding sequences, that must be removed through splicing throughout life," Singh said. "We've found an RNA structure that aberrantly promotes the escape of one of the coding sequences through splicing."

Singh cautioned that development of a new treatment would have to go through years of and further study, but the bottom line is that the research could result in a new way to cure . In fact, private companies have shown interest in negotiating with Iowa State to begin development of a drug based on the research, Singh said.

He said the paper required about five years of painstaking work, testing hundreds of to individual gene sequences one at a time to see if they have an effect on splicing.

"The process involves a lot of trial and error," he said.

Studying RNA structures within the non-coding portion of the human is still a relatively untouched frontier with much left to teach us, Singh said. It appears that RNA structures hold enormous information, and new techniques for studying RNA structures are unlocking new possibilities that could have major implications for how we treat genetic diseases, he said.

"In many ways this is still a very poorly understood field," Singh said. "But around half of all genetic diseases are a result of errors in splicing, so we have much to gain from answering these questions."

More information: nar.oxfordjournals.org/content… 7/14/nar.gkt609.full

Related Stories

Recommended for you

Biologists reprogram skin cells to mimic rare disease

14 hours ago

Johns Hopkins stem cell biologists have found a way to reprogram a patient's skin cells into cells that mimic and display many biological features of a rare genetic disorder called familial dysautonomia. ...

Student seeks to improve pneumonia vaccines

Aug 20, 2014

Almost a million Americans fall ill with pneumonia each year. Nearly half of these cases require hospitalization, and 5-7 percent are fatal. Current vaccines provide protection against some strains of the ...

User comments