Getting to the heart of genetic cardiac defects

July 29, 2013
Getting to the heart of genetic cardiac defects
Credit: ThinkStock

(Medical Xpress)—With modern surgical techniques increasingly able to save babies born with heart defects, biomedical researchers are hunting for ways to manage the subsequent rising prevalence of congenital heart disease.

Dr Mauro Costa of the Australian Regenerative Medicine Institute (ARMI) at Monash University has discovered, in collaboration with the Victor Chang Cardiac Research Institute, a mutation to a gene that is key to cardiac development. The researchers have produced a genetic model that mimics the human disease, allowing lab-based study of long-term effects of the mutation, which is no longer an infant death sentence.

Heart defects remain a leading cause of infant death, but surgical advances are making headway. The corollary of this progress is an alarming increase in the prevalence of (CHD) in the community, as survivors go on to have families of their own and pass on the genetic defects. Now, 3000 people per million have CHDs and society is experiencing a five per cent annual increase in people genetically pre-disposed to CHDs.

Dr Costa, a fellow in the laboratory of ARMI Director Professor Nadia Rosenthal, said these statistics were especially worrying when considered in light of the obesity epidemics in developed countries.

"Modern medicine has created a situation where serious genetic that would not normally be passed on, are actually becoming more common," Dr Costa said.

"Our modern lifestyle has created a situation where, due to high levels of obesity, diabetes, and unhealthy diets, the World Health Organization predicts that cardiovascular disease will remain the leading cause of death world wide.

"The combined effect of these two factors makes for a grim picture. We need to understand the interplay between lifestyle-related and so we can better manage the emerging situation."

The unique mutation discovered by Dr Costa and colleagues affects the gene NKX2.5, a master regulator of cardiogenesis, which is highly conserved throughout evolution. First identified in the fruit fly, it was called "tin man" because flies without this gene effectively developed no heart. The gene operates differently in more complex organisms, but mutations to it are one of the most common causes of CHDs in humans.

The particular mutation can play a role in a number of developmental heart defects and cardiomyopathy. Now, for the first time, the progress of the disease and the effects of obesity can be studied.

The groundwork for these studies was published in Circulation: Cardiovascular Genetics.

Explore further: New mouse model helps explain gene discovery in congenital heart disease

More information:

Related Stories

Mutation linked to congenital urinary tract defects

July 17, 2013

Researchers at Columbia University Medical Center (CUMC) and collaborators have identified a genetic mutation that causes congenital malformations of the kidney and urinary tract, a common form of birth defect and the most ...

Landmark study on origins of congenital heart disease

July 24, 2013

(Medical Xpress)—In a first-of-its-kind study published in the journal Nature, scientists identified a group of gene mutations that may be behind up to 10 percent of complex congenital heart defects, the most frequent birth ...

Recommended for you

New class of RNA tumor suppressors identified

November 23, 2015

A pair of RNA molecules originally thought to be no more than cellular housekeepers are deleted in over a quarter of common human cancers, according to researchers at the Stanford University School of Medicine. Breast cancer ...

Batten disease may benefit from gene therapy

November 11, 2015

In a study of dogs, scientists showed that a new way to deliver replacement genes may be effective at slowing the development of childhood Batten disease, a rare and fatal neurological disorder. The key may be to inject viruses ...

Molecular clocks control mutation rate in human cells

November 9, 2015

Every cell in the human body contains a copy of the human genome. Through the course of a lifetime all cells are thought to acquire mutations in their genomes. Some of the mutational processes generating these mutations do ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.