Neurons in the rat brain use a preexisting set of firing sequences to encode future navigational experiences

July 25, 2013
Figure 1: The firing of temporal sequences of place cells in rats during sleep encodes for future spatial trajectories. Credit: George Dragoi and Susumu Tonegawa, RIKEN–MIT Center for Neural Circuit Genetics

Specialized neurons called place cells, located in the hippocampus region of the brain, fire when an animal is in a particular location in its environment, and it is the linear sequence of their firing that encodes in the brain movement trajectories from one location to another. Building on previous work, George Dragoi and Susumu Tonegawa from the RIKEN–MIT Center for Neural Circuit Genetics have now shown that place cells have a preexisting inventory of firing sequences that they can use to encode multiple novel routes of exploration1.

Specific sequences of are known to encode spatial experiences, but it has been debated whether such sequences are formed during a new experience or preformed and adapted to specific experiences when required. Dragoi and Tonegawa recently showed that 'future' place cells fire in sequence while the animal is asleep, prior to experiencing a novel environment, and that animals use this preexisting neuronal firing pattern to rapidly learn how to navigate their surroundings.

To confirm and investigate this mechanism further, the researchers first recorded the of place cells in rats during one hour of sleep. Next, they monitored this activity during movement along a track that the rat had not previously explored, and later recorded it during movement along the same track with two additional lengths separated by right-angle turns. They then correlated the temporal pattern of place cell activity recorded during sleep with the spatial pattern of activity recorded while the animals were freely exploring the longer track.

The researchers found that the sequences of place cell activity were unique for each of the three lengths of the track and matched those recorded during sleep (Fig. 1). "We had observed the same sequences as independent clusters of correlated temporal sequences during the preceding sleep period," explains Dragoi. 

The results suggest that rapid encoding of particular trajectories within novel environments is achieved during exploration by selecting from a set of preexisting temporal sequences that fired during sleep. In other words, hippocampal place cells appear to be prearranged into sets of sequential firing cells that can be adapted rapidly to encode for multiple spatial that the animal could undertake in its surroundings. Based on their data, Dragoi and Tonegawa predict that the sets of hippocampal place cells could encode for at least 15 unique future spatial experiences. In addition, their findings could explain the role that the hippocampus plays in humans in imagining future encounters within our own complex environment.

Explore further: 'Time cells' bridge the gap in memories of event sequences

More information: Proceedings of the National Academy of Sciences USA 110, 9100–9105 (2013). DOI: 10.1073/pnas.1306031110

Related Stories

'Time cells' bridge the gap in memories of event sequences

August 24, 2011

The hippocampus is a brain structure that plays a major role in the process of memory formation. It is not entirely clear how the hippocampus manages to string together events that are part of the same experience but are ...

Mapping blank spots in the cheeseboard maze

March 22, 2013

(Medical Xpress)—During spatial learning, space is represented in the hippocampus through plastic changes in the connections between neurons. Jozsef Csicsvari and his collaborators investigate spatial learning in rats using ...

Going places: Rat brain 'GPS' maps routes to rewards

April 17, 2013

While studying rats' ability to navigate familiar territory, Johns Hopkins scientists found that one particular brain structure uses remembered spatial information to imagine routes the rats then follow. Their discovery has ...

Recommended for you

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jul 26, 2013
Cool, a basis set of spatial percepts, that's good engineering :)
not rated yet Jul 27, 2013
Previous experience recall applied to new environments - imagined or encountered.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.