Fetal tissue-derived stem cells may be ideal source for repairing tissues and organs

Multipotent fetal dermal cells (MFDCs) may be an ideal source for cell therapy for repairing damaged tissues and organs. Their performance is superior to that of adult dermal cells, said a research team in Italy that developed a cell isolation technique for MFDCs and subsequently published a study that appears as an early e-publication for the journal Cell Transplantation.

"When compared to adult dermal cells, display several advantages, including a greater cellular yield after isolation, the ability to proliferate longer, and the retention of differentiation potential," said study co-author Dr. C.M. Chinnici of the Fondazie Ri.MED, Regenerative Medicine and Biomedical Technologies Unit in Palermo, Italy. "Cells from fetal dermis have been proven safe and efficacious in the treatment of pediatric burns, but proper characterization of these cells has not yet been provided."

Their research provided a protocol for the isolation and expansion of large numbers of MFDCs that may see future clinical use, said the study authors.

"We generated, propagated and analyzed a proliferating population of cells derived from human fetal dermis taken at 20-22 weeks of gestation," wrote the researchers. "The non-enzymatic isolation technique allows for a spontaneous selection of cells with higher motility and yields a nearly homogeneous ."

The MFDCs, they reported, were "highly proliferative and were successfully expanded with no growth factor additions." They noted that, unlike mensenchymal , which progressively lose their differentiation capacity, the MFDCs "retained their osteogenenic and adipogenic differentiation potential" meaning that their potential impact for is likely to be greater.

"The MFDCs demonstrated their favorable characteristics for a potential large scale production aimed at clinical use," said Dr. Chinnici.

The researchers noted that the most interesting aspect of their study was the finding that can be successfully isolated from small fetal skin biopsies and maintained in culture for long periods with multipotency, stability and low immunogenicity retained, "thus generating large quantities of cells for clinical use."

"Given these results, the future prospect is to translate the concept of MFDCs as cells of therapeutic interest into experimental models of tissue regeneration," they concluded.

More information: Chinnici, C. M.; Amico, G.; Monti, M.; Motta, S.; Casalone, R.; Petri, S. L.; Spada, M.; Gridelli, B.; Conaldi, P. G. Isolation and Characterization of Multipotent Cells from Human Fetal Dermis. Cell Transplant. Appeared or available online: June 13, 2013 www.ingentaconnect.com/content… rints/ct1022chinnici

Related Stories

Study finds stem cells in deer antler

date Mar 19, 2013

A team of researchers in Seoul, Korea have reported finding evidence that deer antlers - unique in that they regenerate annually - contain multipotent stem cells that could be useful for tissue regeneration in veterinary ...

Human stem cell-derived hepatocytes regenerate liver function

date Jul 27, 2013

Researchers have generated functional hepatocytes from human stem cells, transplanted them into mice with acute liver injury, and shown the ability of these stem-cell derived human liver cells to function normally and increase ...

Tracking nanodiamond-tagged stem cells

date Aug 05, 2013

A method that is used to track the fate of a single stem cell within mouse lung tissue is reported in a study published online this week in Nature Nanotechnology. The method may offer insights into the factors that determ ...

Recommended for you

Life-prolonging protein could inhibit ageing diseases

date 21 hours ago

Researchers have found a molecule that plays a key link between dietary restriction and longevity in mammals. This discovery may lead to the development of new therapies to inhibit age-related diseases.

How sleep helps us learn and memorize

date May 28, 2015

Sleep is important for long lasting memories, particularly during this exam season. Research publishing in PLOS Computational Biology suggests that sleeping triggers the synapses in our brain to both streng ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.