Sense of smell: The nose and the brain make quite a team... in disconnection

August 12, 2013

Alan Carleton's team from the Neuroscience Department at the University of Geneva (UNIGE) Faculty of Medicine has just shown that the representation of an odor evolves after the first breath, and that an olfactory retentivity persists at the central level. The phenomenon is comparable to what occurs in other sensory systems, such as vision or hearing. These movements undoubtedly enable the identification of new odors in complex environments or participate in the process of odor memorization. This research is the subject of a publication in the latest online edition of the journal PNAS (Proceedings of the National Academy of Sciences).

Rodents can identify odors in a single breath, which is why research on sense of smell in mammals focuses on that first inhalation. Yet we must remember that from a neurological standpoint, sensory representations change during and after the stimuli. To understand the evolution of these , an international team of researchers led by Professor Alan Carleton at the University of Geneva (UNIGE) Faculty of Medicine conducted the following experiment: by observing the brain of an alert mouse, the neuroscientists recorded the emitted by the of animals inhaling odors.

They were surprised to find that in mitral cells, some representations evolved during the first inhalations, and others persisted and remained stable well after the odor ceased. The cohort subjected to these analyses revealed that the post-odor responses contained an odor retentivity—a specific piece of information about the nature of odor and its concentration.

Will odor memory soon be understood?

Using cerebral imaging, researchers discovered that the majority of sensory activity is visible only during the presentation of odors, which implies that retentivity is essentially internal to the brain. Therefore, odor retentivity would not be dependent upon odorous physicochemical properties. Finally, to artificially induce retentivity, the team photostimulated mitral cells using channelrhodopsin, then recorded the persistent activity maintained at the central level. The strength and persistence of the retentivity were found to be dependent on the duration of the stimulation, both artificial and natural.

In summary, the were able to show that the representation of an odor changes after the first breath, and that an olfactory retentivity persists at the central level, a phenomenon comparable to what occurs in other , such as vision and hearing. These movements undoubtedly enable the identification of new odors in complex environments or participate in the process of odor memorization.

Explore further: Researcher finds elderly lose ability to distinguish between odors

More information: The journal PNAS has just published these findings in its latest online edition.

Related Stories

Anxiety boosts sense of smell

March 22, 2012

Anxious people have a heightened sense of smell when it comes to sniffing out a threat, according to a new study by Elizabeth Krusemark and Wen Li from the University of Wisconsin-Madison in the US. Their work¹ is published ...

Recommended for you

Neuron responsible for alcoholism found

September 2, 2015

Scientists have pinpointed a population of neurons in the brain that influences whether one drink leads to two, which could ultimately lead to a cure for alcoholism and other addictions.

Scientists see motor neurons 'walking' in real time

September 2, 2015

When you're taking a walk around the block, your body is mostly on autopilot—you don't have to consciously think about alternating which leg you step with or which muscles it takes to lift a foot and put it back down. That's ...

Neural basis of multitasking identified

September 1, 2015

What makes someone better at switching between different tasks? Looking for the mechanisms behind cognitive flexibility, researchers at the University of Pennsylvania and Germany's Central Institute of Mental Health in Mannheim ...

Deciphering the olfactory receptor code

August 31, 2015

In animals, numerous behaviors are governed by the olfactory perception of their surrounding world. Whether originating in the nose of a mammal or the antennas of an insect, perception results from the combined activation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.