Re-learning how to see: Researchers find a crucial on-off switch in visual development

August 1, 2013
"Lazy eye" and other forms of amblyopia must be diagnosed and corrected in very early childhood, during the critical period for development of the neural networks which make the stronger eye permanently dominant. By identifying the genetic on-off switch for the development of eye dominance, a University of Maryland-led team offers hope for correcting these grave visual problems later in life. Credit: Loretta Kuo

A discovery by a University of Maryland-led research team offers hope for treating "lazy eye" and other serious visual problems that are usually permanent unless they are corrected in early childhood.

Amblyopia afflicts about three percent of the population, and is a widespread cause of in children. It occurs when both eyes are structurally normal, but mismatched – either misaligned, or differently focused, or unequally receptive to because of an obstruction such as a in one eye.

During the so-called "critical period" when a young child's brain is adapting very quickly to , the brain builds a powerful connecting the stronger eye to the visual cortex. But the weaker eye gets less stimulation and develops fewer synapses, or points of connection between neurons. Over time the brain learns to ignore the weaker eye. Mild forms of such as "" result in problems with . In the most severe form, deprivation amblyopia, a cataract blocks light and starves the eye of , significantly altering synaptic development and seriously impairing vision.

Because declines rapidly with age, early diagnosis and treatment of amblyopia is vital, said neuroscientist Elizabeth M. Quinlan, an associate professor of biology at UMD. If the underlying cause of amblyopia is resolved early enough, the child's vision can recover to normal levels. But if the treatment comes after the end of the critical period and the loss of synaptic plasticity, the brain cannot relearn to see with the weaker eye.

"If a child is born with a cataract and it is not removed very early in life, very little can be done to improve vision," Quinlan said. "The severe amblyopia that results is the most difficult to treat. For that reason, science has the most to gain by a better understanding of the underlying mechanisms."

Quinlan, who specializes in studying how communication through the brain's circuits changes over the course of a lifetime, wanted to find out what process controls the timing of the critical period of synaptic plasticity. If researchers could find the neurological on-off switch for the critical period, she reasoned, clinicians could use the information to successfully treat older children and adults.

Researchers in Quinlan's University of Maryland lab teamed up with their counterparts in the laboratory of Alfredo Kirkwood at Johns Hopkins University to address two questions: What are the age boundaries of the critical period for synaptic plasticity, when it comes to determining eye dominance? And what developmental processes are involved?

Experiments in rodents suggested the timing of the critical period is controlled by a specific class of inhibitory neurons, which come into play after a visual stimulus activates excitatory neurons that link the eye to the . The inhibitory neurons act as signal controllers, affecting the interactions between excitatory neurons and synapses.

"The generally accepted view has been that as the inhibitory neurons develop, synaptic plasticity declines, which was thought to occur at about five weeks of age in rodents," roughly equivalent to five years of age in humans, Quinlan said. But in earlier experiments, Quinlan and Kirkwood found no correlation between the development of these inhibitory neurons and the loss of plasticity. In fact, they found the visual circuitry in rodents was highly adaptable at ages beyond five weeks.

In their latest research the UMD-led team looked "one synapse upstream from these inhibitory ," Quinlan said, studying the control of that synapse by a protein called NARP (Neuronal Activity-Regulated Pentraxin). Working with two sets of mice – one group genetically similar to wild mice and another that lacked the NARP gene - the researchers covered one eye in each animal to simulate conditions that produce amblyopia.

The mice that were genetically similar to wild mice developed amblyopia, with characteristic dominance of the normal eye over the deprived eye. But the mice that lacked NARP did not develop amblyopia, regardless of age or the length of time one eye was deprived of stimulation.

The study, published in the current issue of the peer-reviewed journal Neuron, demonstrated that only one specific class of was affected by the absence of NARP. Without NARP, the mice simply had no critical period in which the brain circuitry was weakened in response to the impaired blocking vision in one eye, Quinlan said. Except for the lack of this plasticity, their vision was normal.

"It's remarkable how specific the deficit is," Quinlan said. Without the NARP protein, "these animals develop normal vision. Their brain circuitry just isn't plastic. We can completely turn off the critical period for plasticity by knocking out this protein."

Since there are indications that NARP levels vary with age, the discovery raises hope that a treatment targeting NARP levels in humans could allow correction of amblyopia late in life, without affecting other aspects of vision.

Explore further: Vision restored with total darkness

More information:

Related Stories

Vision restored with total darkness

February 14, 2013

Restoring vision might sometimes be as simple as turning out the lights. That's according to a study reported on February 14 in Current Biology, a Cell Press publication, in which researchers examined kittens with a visual ...

Lazy eye disorder: A promising new therapeutic approach

April 22, 2013

A research team led by Dr. Robert Hess from McGill University and the Research Institute of the McGill University Health Centre (RI-MUHC) has used the popular puzzle video game Tetris in an innovative approach to treat adult ...

Re-tuning responses in the visual cortex

December 21, 2012

New research led by Shigeru Tanaka of the University of Electro-Communications and visiting scientist at the RIKEN Brain Science Institute has shown that the responses of cells in the visual cortex can be 're-tuned' by experience.

Recommended for you

Imaging technique maps serotonin activity in living brains

October 20, 2016

Serotonin is a neurotransmitter that's partly responsible for feelings of happiness and for mood regulation in humans. This makes it a common target for antidepressants, which block serotonin from being reabsorbed by neurons ...

ALS study reveals role of RNA-binding proteins

October 20, 2016

Although only 10 percent of amyotrophic lateral sclerosis (ALS) cases are hereditary, a significant number of them are caused by mutations that affect proteins that bind RNA, a type of genetic material. University of California ...

Overcoming egocentricity increases self-control

October 19, 2016

Neurobiological models of self-control usually focus on brain mechanisms involved in impulse control and emotion regulation. Recent research at the University of Zurich shows that the mechanism for overcoming egocentricity ...

Exercise may help ward off memory decline

October 19, 2016

Exercise may be associated with a small benefit for elderly people who already have memory and thinking problems, according to new research published in the October 19, 2016, online issue of Neurology, a medical journal of ...

Going for a run could improve cramming for exams

October 19, 2016

Ever worried that all the information you've crammed in during a study session might not stay in your memory? The answer might be going for a run, according to a new study published in Cognitive Systems Research.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.