Slowing the ageing process—it's in your genes

Dr Austen Ganley, senior lecturer in genetics and evolution in the Institute of Natural and Mathematical Sciences.

Imagine being able to take a drug that can reduce the rate at which you age. Research by Massey University senior lecturer in genetics Dr Austen Ganley is making this dream one step closer to reality.

A new study, published in the prestigious scientific journal Current Biology, provides evidence that aging works through a special set of that everyone has - the rDNA genes.

Dr Ganley was part of an international team, led by Dr Takehiko Kobayashi from the National Institute of Genetics in Mishima, Japan. The team found that by improving the stability of the rDNA genes, which are usually quite unstable, they could extend the lifespan of baker's yeast, a for studying cell aging.

"This work is exciting because it shows that rDNA instability is a new factor in aging," says Dr Ganley.

The researchers set out to understand how the Sir2 gene reduces aging in yeast. Sir2 genes shot to prominence as potential human anti-aging genes with the finding that resveratrol, a component of , activates them. However, subsequent research has found that resveratrol doesn't extend lifespan in .

The yeast Sir2 gene controls rDNA stability, but also has many other targets in the cell. The breakthrough came when the scientists found a way to separate Sir2's effect on the rDNA from its other effects. This allowed them to show that Sir2's anti-aging effect comes exclusively through stabilisation of the rDNA genes.

"This is significant," says Dr Ganley, "because in humans there are seven Sirtuins (the equivalent of the Sir2 gene), and they all behave very differently to the yeast Sir2 gene. In contrast, the rDNA genes are very similar between yeast and humans, therefore rDNA gene instability may be the common factor in aging across life."

Professor Kobayashi originally proposed a role for rDNA instability in aging five years ago, but unequivocal support for this theory has been lacking until now. These new results suggest that finding a way to artificially improve rDNA gene stability may delay the aging process in humans too.

However, Dr Ganley cautions that the role of the rDNA genes in human aging still needs to be clarified.

"Although we know human rDNA genes are unstable, we don't know if this instability affects . Finding this out is the next critical step, and the challenge lies in doing these experiments with human cells, which are more difficult to work with than ."

Dr Ganley and Professor Kobayashi will publish an update of this rDNA aging theory in a special "Cell aging and death" issue of the scientific journal FEMS Yeast Research early next year.

This study is a part of Dr Ganley's research program being carried out at the Albany campus into the effects of the rDNA genes, and is supported by the Marsden Fund. He is also interested in the involvement of the rDNA genes in other biological processes, such as cancer and chromosome inheritance.

More information: www.sciencedirect.com/science/… ii/S0960982213008713

Related Stories

Wistar Institute team finds key target of aging regulator

Jun 10, 2009

Researchers at The Wistar Institute have defined a key target of an evolutionarily conserved protein that regulates the process of aging. The study, published in Nature, provides fundamental knowledge about key mechanisms of agi ...

How yeast chromosomes avoid the bad breaks

Aug 07, 2011

The human genome is peppered with repeated DNA elements that can vary from a few to thousands of consecutive copies of the same sequence. During meiosis—the cell division that produces sperm and eggs—repetitive ...

DNA 'off switch' may reverse premature aging

Jun 15, 2011

The secret to preventing or reversing premature aging may be found in a DNA “off switch” that humans share with common yeast, according to new research from the University of Toronto.

Recommended for you

Researchers find new mechanism for neurodegeneration

Jul 24, 2014

A research team led by Jackson Laboratory Professor and Howard Hughes Investigator Susan Ackerman, Ph.D., have pinpointed a surprising mechanism behind neurodegeneration in mice, one that involves a defect in a key component ...

Schizophrenia's genetic architecture revealed (w/ Video)

Jul 23, 2014

Queensland scientists are closer to effective treatments for schizophrenia after uncovering dozens of sites across the human genome that are strongly associated with a genetic predisposition to schizophrenia.

User comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Moebius
1 / 5 (3) Sep 05, 2013
The road to immortality consists of 3 steps. Slowing aging. Stopping aging. Reversing aging.
CapitalismPrevails
1.7 / 5 (6) Sep 05, 2013
However, subsequent research has found that resveratrol doesn't extend lifespan in mammals.


Then why do the French live longer lives yet have fatty diets? Because they consume more resveratrol through their red wine.
XQuantumKnightX
5 / 5 (2) Sep 05, 2013
However, subsequent research has found that resveratrol doesn't extend lifespan in mammals.

Beginning at two months of age, the mice were divided to receive a standard diet, or a diet supplemented with resveratrol. In SAMP8 mice fed a standard diet, the median life expectancy was 10.4 months in comparison with the SAMR1 group which survived a median of 17.8 months. However, in SAMP8 mice given resveratrol, median life expectancy increased to 14 months, and SAMR1 mice that received the compound experienced a median life span of 21.8 months. Maximum life span, determined by the longest-lived 20 percent of animals in each group, was also greater in animals that received resveratrol. Analysis of the animals' brains revealed higher levels of SIRT1, a protein activated during calorie restriction, in the resveratrol-fed groups.