Who learns from the carrot, and who from the stick?

To flexibly deal with our ever-changing world, we need to learn from both the negative and positive consequences of our behaviour. In other words, from punishment and reward. Hanneke den Ouden from the Donders Institute in Nijmegen demonstrated that serotonin and dopamine related genes influence how we base our choices on past punishments or rewards. This influence depends on which gene variant you inherited from your parents. These results were published in Neuron on November 20.

The dopamine and partly determine our sensitivity to reward and punishment. At least, this was a common assumption . Hanneke den Ouden and Roshan Cools investigated this assumption together with colleagues from the Donders Institute and New York University. Den Ouden explains: "We used a simple computer game to test the genetic influence of the genes DAT1 and SERT, as these genes influence dopamine and serotonin. We discovered that the dopamine gene affects how we learn from the long-term consequences of our choices, while the serotonin gene affects our choices in the short term."

Online game

"In nearly 700 people we analysed which variant of the SERT and the DAT1 genes they had," says den Ouden. "Using an , we investigated how well people are able to adjust their choice strategy after receiving a reward or a punishment." The players would repeatedly choose one of two symbols. Symbol A usually resulted in a reward whereas symbol B usually resulted in punishment. Halfway through the game, these rules were reversed. The game allowed the researchers to measure how flexible people are in adjusting their choices when the rules change. But it also showed whether people impulsively change their choice when the computer happened to give misleading feedback.

Different genes, different strategies

Den Ouden: "Different players use different strategies, which depend on their genetic material. People's tendency to change their choice immediately after receiving a punishment depends on which serotonin they inherited from their parents. The dopamine gene variant, on the other hand, exerts influence on whether people can stop themselves making the choice that was previously rewarded, but no longer is."

This study shows that dopamine and serotonin are important for different forms of flexibility associated with receiving reward and . Many neuropsychiatric disorders caused by abnormal dopamine and/or are associated with forms of inflexibility, for example addiction, anxiety, or Parkinson's disease. So this study not only tells us more about the heritability of our choice behaviour; a better understanding of the relationship between brain chemicals and behaviour in healthy people will ultimately help to provide us with better insight into these .

More information: "Dissociable Effects of Dopamine and Serotonin on Reversal Learning." Hanneke E.M. den Ouden, Nathaniel D. Daw, Guillén Fernandez, Joris A. Elshout, Mark Rijpkema, Martine Hoogman, Barbara Franke, Roshan Cools Neuron 80, 1–11, November 20, 2013. www.cell.com/neuron/abstract/S0896-6273(13)00789-7

Related Stories

ADHD medicine affects the brain's reward system

Nov 09, 2012

(Medical Xpress)—A group of scientists from the University of Copenhagen has created a model that shows how some types of ADHD medicine influence the brain's reward system. The model makes it possible to ...

Recommended for you

Emotional adjustment following traumatic brain injury

17 hours ago

Life after a traumatic brain injury resulting from a car accident, a bad fall or a neurodegenerative disease changes a person forever. But the injury doesn't solely affect the survivor – the lives of their spouse or partner ...

New ALS associated gene identified using innovative strategy

Oct 22, 2014

Using an innovative exome sequencing strategy, a team of international scientists led by John Landers, PhD, at the University of Massachusetts Medical School has shown that TUBA4A, the gene encoding the Tubulin Alpha 4A protein, ...

User comments