New method to detect genetic defects in egg cells could double the success rate of IVF

December 19, 2013

Infertility affects up to 15 percent of couples around the world, and in vitro fertilization (IVF) is one way to treat this common condition. A study published by Cell Press December 19th in the journal Cell reveals a safe, accurate, and low-cost method to select genetically normal embryos for the IVF procedure and thereby increase a couple's chance of producing a healthy child.

Through whole-genome sequencing of individual , the new method detects and DNA sequence variations associated with genetic disorders. "In this way, we kill two birds with one stone: one set of deep sequencing analysis to avoid two types of genetic problems," says study author Jie Qiao of Third Hospital, Peking University. "Theoretically, if this works perfectly, we will be able to double the success rate of test tube baby technology from 30 percent to 60 percent or even more."

The IVF procedure involves joining a woman's egg and a man's sperm in a laboratory dish and then transferring embryos into the woman's womb. Various procedures are currently available to detect genetic defects in embryos prior to implantation, but these approaches are often invasive, requiring the removal of cells from the growing embryo, and do not simultaneously detect both chromosomal abnormalities and DNA sequence variations associated with genetic disorders.

Researchers have recently developed whole-genome sequencing methods to simultaneously detect both types of defects in single human sperm cells, but until now, an analogous approach had not been applied to egg cells, even though chromosomal abnormalities are much more common in egg cells than in sperm cells.

In the new study, Sunney Xie of Peking University and Harvard University teamed up with Qiao and Fuchou Tang of Peking University to develop a method for sequencing the entire genomes of polar bodies—cells that arise as a byproduct of egg cell division and often die later on. Because polar bodies are dispensable for human embryonic development, they can be safely removed without harming the embryo. "We are now starting a clinical trial based on this approach," Xie says. "If the clinical trial works, this technique could enormously increase the success rate of IVF, especially for older women or women who have had recurrent miscarriages."

Explore further: New assessment reveals value of second embryo biopsy for women of advanced maternal age

More information: Cell, Hou et al.: "Genome Analyses of Single Human Oocytes."

Related Stories

Sticky sperm could hold fertility key

October 29, 2013

Researchers from the University of Leeds think that sticky sperm could hold the key to greater success for couples undergoing IVF treatment.

Women's age affects every stage of IVF

December 6, 2013

A woman's age affects the outcome of every single step of IVF treatment, according to a University of Aberdeen study published today in PLOS ONE. This is the first study of its kind to break down failure rates for each stage ...

Recommended for you

Researchers grow retinal nerve cells in the lab

November 30, 2015

Johns Hopkins researchers have developed a method to efficiently turn human stem cells into retinal ganglion cells, the type of nerve cells located within the retina that transmit visual signals from the eye to the brain. ...

Shining light on microbial growth and death inside our guts

November 30, 2015

For the first time, scientists can accurately measure population growth rates of the microbes that live inside mammalian gastrointestinal tracts, according to a new method reported in Nature Communications by a team at the ...

Functional human liver cells grown in the lab

November 26, 2015

In new research appearing in the prestigious journal Nature Biotechnology, an international research team led by The Hebrew University of Jerusalem describes a new technique for growing human hepatocytes in the laboratory. ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.