Breaking the cycle of obesity, inflammation and disease

December 19, 2013
Breaking the cycle of obesity, inflammation and disease

Researchers at University of Michigan have illuminated an aspect of how the metabolic system breaks down in obesity. The findings provide additional evidence that a drug entering clinical trials at the university could reverse obesity, Type 2 diabetes and fatty liver disease in humans.

In a paper scheduled for online publication in the journal eLife on Dec. 24, Alan Saltiel, the Mary Sue Coleman Director of the Life Sciences Institute, explains how, in , stop responding to hormones known as that trigger them to expend more energy. However, the fat cells of obese mice treated with a drug called amlexanox regained sensitivity to catecholamines, burned the excess energy and returned to normal size.

Next month, scientists at U-M will begin a placebo-controlled clinical trial of amlexanox to test its efficacy as a drug for treating obesity and diabetes in humans. Formulations of amlexanox are prescribed in different international markets to treat asthma and canker sores.

Obesity leads to a state of chronic, low-grade inflammation in liver and fat tissue. Scientists believe that inflammation links obesity and insulin resistance via a pathway called NFkB, which is involved in the regulation of a range of cellular processes and activated in obesity.

Activation of NFkB increases the levels of a pair of genes, IKKε and TBK1, which in turn reduce the ability of certain receptors in the fat cells of to respond to catecholamines like adrenaline, "fat-burning" hormones generated by the sympathetic nervous system in response to stress.

"We've suspected that in obesity, fat cells become less sensitive to catecholamines such as adrenaline, and that this reduced sensitivity in turn reduces energy expenditure, but the details of this haven't been fully understood," Saltiel said.

High levels of IKKε and TBK1 also resulted in lower levels of a second messenger molecule called cAMP, which increases energy expenditure by elevating fat burning.

Amlexanox interfered with the two enzymes and restored sensitivity to catecholamine, allowing the fat cells to burn energy.

In research published in February 2013, Saltiel found that amlexanox reversed obesity, diabetes and fatty liver in mice. The forthcoming eLife paper explains in part how amlexanox works.

"There is considerable evidence to suggest that in states of obesity, adipose tissue becomes less sensitive to catecholamines because IKKε and TBK1 act as a sort of brake on metabolism, and that this reduced sensitivity in turn reduces ," Saltiel said. "By releasing the brake, amlexanox seems to free the metabolic system of mice to burn more and possibly store less energy in response to catecholamines."

Related Stories

Improving obesity-induced insulin sensitivity

June 1, 2012

In recent years, a growing body of evidence has linked inflammation to the development of insulin resistance. In insulin resistance, the hormone insulin is less effective in promoting glucose uptake from the bloodstream into ...

New research shows obesity is an inflammatory disease

December 2, 2013

Scientists have moved a step closer to an "obesity drug" that may block the effects of diets high in sugar and fats. In a new research report published in the December 2013 issue of The FASEB Journal, scientists show that ...

Recommended for you

Crystal clear images uncover secrets of hormone receptors

July 31, 2015

Many hormones and neurotransmitters work by binding to receptors on a cell's exterior surface. This activates receptors causing them to twist, turn and spark chemical reactions inside cells. NIH scientists used atomic level ...

A cheaper, high-performance prosthetic knee

July 30, 2015

In the last two decades, prosthetic limb technology has grown by leaps and bounds. Today, the most advanced prostheses incorporate microprocessors that work with onboard gyroscopes, accelerometers, and hydraulics to enable ...

Flow means 'go' for proper lymph system development

July 27, 2015

The lymphatic system provides a slow flow of fluid from our organs and tissues into the bloodstream. It returns fluid and proteins that leak from blood vessels, provides passage for immune and inflammatory cells from the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.