Experimental drug could enhance multiple myeloma and myeloid leukemia therapies

A pre-clinical study led by Virginia Commonwealth University Massey Cancer Center and Department of Internal Medicine researchers suggests that an experimental drug known as dinaciclib could improve the effectiveness of certain multiple myeloma and myeloid leukemia therapies. The study, recently published in the journal Molecular Cancer Therapeutics, showed that dinaciclib disrupted a cell survival mechanism known as the unfolded protein response (UPR). Without the UPR, multiple myeloma and myeloid leukemia cells were unable to combat damage caused by some anti-cancer agents.

"Although dinaciclib has shown promising pre-clinical activity against a variety of tumor , and is currently undergoing phase I/II clinical trials in several malignancies, the mechanisms responsible for its anti-tumor activity are not fully understood," says the study's lead investigator Steven Grant, M.D., associate director for translational research, co-leader of the Developmental Therapeutics research program and Shirley Carter Olsson and Sture Gordon Olsson Chair in Oncology Research at Massey. "Our research highlights a potentially new mechanism of dinaciclib action, and raises the possibility that this agent could be a useful addition to current and myeloid leukemia therapies."

Dinaciclib is a member of a class of drugs known as cyclin-dependent kinase (CDK) inhibitors. CDKs regulate a series of events known as the cell cycle, or cell-division cycle, that lead to the division and duplication of cells. In many cancers, CDKs are overactive or CDK-inhibiting proteins are not functional, which results in the unregulated proliferation of cancer cells. Laboratory observations from this study suggest that two specific CDKs, CDK1 and CDK5, play key roles in regulating the UPR by helping to control the production and accumulation of a protein known as X-box binding pretein-1 (XBP-1).

The spliced form of XBP-1 (XBP-1s) helps regulate the expression of genes critical to cellular stress responses. External stressors, including certain anti-cancer agents, can cause mis-folded proteins to accumulate in the endoplasmic reticulum (ER), an interconnected network of sacs and tubules that manufacture, process and transport a variety of compounds important for cell survival. These stressors can also cause XBP-1s to accumulate in the cell's nucleus, which promotes the UPR and helps cells withstand the damaging effects of mis-folded proteins. The scientists discovered that dinaciclib, by interfering with UPR activation, caused multiple myeloma and myeloid leukemia cells to initiate a form of cell suicide known as apoptosis when exposed to agents that induced ER stress.

"These findings build on a long history of work in our laboratory investigating mechanisms by which respond to environmental stresses," says Grant. "We intend to continue investigating ways in which dinaciclib and other CDK inhibitors might be used to disrupt the UPR and potentially improve the effectiveness of certain agents for the treatment of multiple myeloma or ."

More information: The full manuscript of the study is available online at: mct.aacrjournals.org/content/e… 3-0714.full.pdf+html

add to favorites email to friend print save as pdf

Related Stories

Scientists devise new strategy to destroy multiple myeloma

Aug 14, 2012

Researchers at Virginia Commonwealth University Massey Cancer Center are reporting promising results from laboratory and animal experiments involving a new combination therapy for multiple myeloma, the second most common ...

New drug combination therapy developed to treat leukemia

Apr 17, 2013

A new, pre-clinical study by researchers at Virginia Commonwealth University Massey Cancer Center suggests that a novel drug combination could lead to profound leukemia cell death by disrupting the function of two major pro-survival ...

Scientists see potential in novel leukemia treatment

May 22, 2012

Scientists at Virginia Commonwealth University Massey Cancer Center may be one step closer to developing a new therapy for acute myeloid leukemia (AML) after discovering that the targeted agents obatoclax and sorafenib kill ...

Recommended for you

Putting the brakes on cancer

Dec 19, 2014

A study led by the University of Dundee, in collaboration with researchers at our University, has uncovered an important role played by a tumour suppressor gene, helping scientists to better understand how ...

Peanut component linked to cancer spread

Dec 19, 2014

Scientists at the University of Liverpool have found that a component of peanuts could encourage the spread and survival of cancer cells in the body.

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.