Scientists construct precise arrays of virus particles toward more efficient diagnostic assays

Figure 1: Electron microscopy image of measles virus particles firmly attached to the surface of a slide with a photoreactive polymer. Credit: Sivakumar et al.

Antibodies in the bloodstream hold the history of a patient's past infections. Clinicians probe this history by immobilizing protein particles or proteins of clinical interest onto the plastic surface of an assay plate and looking for antibodies that 'stick' to those targets after incubation with a serum sample. Yoshihiro Ito and colleagues from the RIKEN Center for Emergent Matter Science have now devised a superior assay that allows researchers and clinicians to obtain such diagnostic information more efficiently.

For some time now, scientists have been detecting DNA using 'microarrays'—glass slides featuring immense numbers of precisely positioned spots, each containing a different target sequence of interest. Unfortunately, translating this approach for has been problematic. "DNA is made of only four bases and the range of chemical functional groups is very limited," says Ito. "But proteins are composed of 20 amino acids with many chemical , which makes it difficult to immobilize different proteins on the same surface using a single method."

Ito and his colleagues found some success with photo-immobilization, in which proteins are mixed with polymers that essentially turn into 'glue' when bombarded with ultraviolet (UV) light. However, as existing polymers are poorly suited for whole virus particles, the team embarked on a search for a superior photo-immobilization medium. The search pointed to photoreactive polyethylene glycol (PEG), which offers numerous advantages. Notably, PEG forms a layer on the slide surface that resists binding by nontarget molecules, thereby yielding more accurate assay results. PEG also responds to lower levels of irradiation, minimizing the risk of UV damage to bound proteins or viruses.

After confirming that the photoreactive PEG layer can successfully affix (Fig. 1), the researchers developed an automated workflow that enabled them to analyze antibody binding from tiny volumes of patient serum on a microarray in just 20 minutes. By comparison, a standard plate-based assay requires far more serum and takes a few hours to complete. The tests also showed essentially equivalent performances in analyzing patient for five different viruses, with a false-negative rate lower than 5 per cent in most cases.

The system is now undergoing further development with the RIKEN venture company Consonal Biotechnologies and Ito sees great potential for rapidly testing a larger number of samples against a greater number of targets. "Our system achieves short detection times with small amounts of blood," he says. "We hope to contribute to society by commercializing this useful system."

More information: Sivakumar, P. M., Moritsugu, N., Obuse, S., Isoshima, T., Tashiro, H. & Ito, Y. "Novel microarrays for simultaneous serodiagnosis of multiple antiviral antibodies." PLoS ONE 8, e81726 (2013). dx.doi.org/10.1371/journal.pone.0081726

add to favorites email to friend print save as pdf

Related Stories

Improving human immunity to malaria

Aug 01, 2012

The deadliest form of malaria is caused the protozoan Plasmodium falciparum. During its life-cycle in human blood, the parasite P. falciparum expresses unique proteins on the surface on infected blood cells. ...

Probing changes to infant milk formulations

Jan 22, 2014

Infant milk formula is a widely accepted alternative to breast milk for babies in their first year of life. Since breast milk contains all the nutrients required by young infants, formula manufacturers aim ...

Recommended for you

Mutation may cause early loss of sperm supply

7 minutes ago

Brown University biologists have determined how the loss of a gene in male mice results in the premature exhaustion of their fertility. Their fundamental new insights into the complex process of sperm generation ...

No more bleeding for 'iron overload' patients?

2 hours ago

Hemochromatosis (HH) is the most common genetic disorder in the western world, and yet is barely known. Only in the US 1 in 9 people carry the mutation (although not necessarily the disease).

3-D printing offers innovative method to deliver medication

7 hours ago

3-D printing could become a powerful tool in customizing interventional radiology treatments to individual patient needs, with clinicians having the ability to construct devices to a specific size and shape. That's according ...

Mystery of the reverse-wired eyeball solved

Feb 27, 2015

From a practical standpoint, the wiring of the human eye - a product of our evolutionary baggage - doesn't make a lot of sense. In vertebrates, photoreceptors are located behind the neurons in the back of the eye - resulting ...

Neurons controlling appetite made from skin cells

Feb 27, 2015

Researchers have for the first time successfully converted adult human skin cells into neurons of the type that regulate appetite, providing a patient-specific model for studying the neurophysiology of weight ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.