Scientists find mechanism that helps HIV evade antibodies, stabilize key proteins

February 3, 2014

NIH scientists have discovered a mechanism involved in stabilizing key HIV proteins and thereby concealing sites where some of the most powerful HIV neutralizing antibodies bind, findings with potential implications for HIV vaccine research.

Numerous spikes jut out of the surface of HIV, each containing a set of three identical, bulb-shaped proteins called gp120 that can be closed together or spread apart like the petals of a flower. Some of the most important sites targeted by HIV neutralizing antibodies are hidden when the three gp120s, or the trimer, are closed, and the gp120 trimer remains closed until the virus binds to a cell.

The researchers discovered that certain located on the gp120 protein undergo a process that stabilizes the trimer in its closed position. In this process, called sulfation, the amino acids acquire a sulfur atom surrounded by four oxygen atoms. By either blocking or increasing sulfation of these amino acids, the researchers changed the sensitivity of the virus to different , indicating that the trimer was being either opened or closed.

The scientists suggest that if the synthesized gp120 widely used in HIV research were fully sulfated during manufacture, the resulting product would adopt a more true-to-life structure and more closely mirror the way the immune system sees unbound HIV. This might help generate a more effective HIV . The researchers add that full sulfation of gp120 may enable scientists to crystallize the molecule more readily, which also could advance HIV vaccine design.

Explore further: Researchers determine how antibody recognizes key sugars on HIV surface

More information: R Cimbro et al. Tyrosine sulfation in the second variable loop (V2) of HIV-1 gp120 stabilizes V2-V3 interaction and modulates neutralization sensitivity. Proceedings of the National Academy of Sciences DOI: 10.1073/pnas.1314718111 (2014).

Related Stories

Researchers determine how antibody recognizes key sugars on HIV surface

November 23, 2011
HIV is coated in sugars that usually hide the virus from the immune system. Newly published research reveals how one broadly neutralizing HIV antibody actually uses part of the sugary cloak to help bind to the virus. The ...

Animal vaccine study yields insights that may advance HIV vaccine research

December 18, 2013
A vaccine study in monkeys designed to identify measurable signs that the animals were protected from infection by SIV, the monkey version of HIV, as well as the mechanism of such protection has yielded numerous insights ...

Tricky protein may help HIV vaccine development

January 13, 2014
Duke scientists have taken aim at what may be an Achilles' heel of the HIV virus.

Scientists create new tool for identifying powerful HIV antibodies

May 9, 2013
A team of NIH scientists has developed a new tool to identify broadly neutralizing antibodies (bNAbs) capable of preventing infection by the majority of HIV strains found around the globe, an advance that could help speed ...

New artificial protein mimics a part of the HIV outer coat

October 22, 2013
A team of scientists at Duke Medicine and Memorial Sloan-Kettering Cancer Center has created an artificial protein coupled with a sugar molecule that mimics a key site on the outer coat of HIV where antibodies can bind to ...

Recommended for you

Paris spotlight on latest in AIDS science

July 21, 2017
Some 6,000 HIV experts gather in Paris from Sunday to report advances in AIDS science as fading hopes of finding a cure push research into new fields.

Scientists elicit broadly neutralizing antibodies to HIV in calves

July 20, 2017
Scientists supported by the National Institutes of Health have achieved a significant step forward, eliciting broadly neutralizing antibodies (bNAbs) to HIV by immunizing calves. The findings offer insights for HIV vaccine ...

Heart toxin reveals new insights into HIV-1 integration in T cell genome

July 20, 2017
Human immunodeficiency virus (HIV)-1 may have evolved to integrate its genetic material into certain immune-cell-activating genes in humans, according to new research published in PLOS Pathogens.

Scientists capture first high-resolution image of key HIV protein transitional state

July 13, 2017
A new, three-dimensional snapshot of HIV demonstrates the radical structural transformations that enable the virus to recognize and infect host cells, according to a new study led by scientists at The Scripps Research Institute ...

Barrier to autoimmune disease may open door to HIV, study suggests

July 11, 2017
Researchers from the University of Colorado School of Medicine have discovered that a process that protects the body from autoimmune disease also prevents the immune system from generating antibodies that can neutralize the ...

Team tests best delivery mode for potential HIV vaccine

June 20, 2017
For decades, HIV has successfully evaded all efforts to create an effective vaccine but researchers at The Scripps Research Institute (TSRI) and the La Jolla Institute for Allergy and Immunology (LJI) are steadily inching ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.