Insights into how a bird flu virus spreads could prevent pandemics

April 10, 2014
H5N1
Colorized transmission electron micrograph of Avian influenza A H5N1 viruses (seen in gold) grown in MDCK cells (seen in green). Credit: Cynthia Goldsmith/CDC

The H5N1 bird flu virus has infected and killed hundreds of people, despite the fact that, at the moment, the virus can't spread easily between people. The death toll could become much worse if the virus became airborne. A study published by Cell Press April 10th in the journal Cell has revealed a minimal set of mutations allowing H5N1 to be transmitted through the air from one ferret to another. The findings will be invaluable for future surveillance programs and may provide early warning signals of the emergence of potential pandemic strains.

"By gaining fundamental knowledge about how the adapts to mammals and becomes airborne, we may ultimately be able to identify viruses that pose a among the large number of influenza viruses that are circulating in animals," says senior study author Ron Fouchier of Erasmus Medical Center. "If we can do this, we might be able to prevent some pandemics in the future."

The H5N1 virus has caused serious outbreaks in domestic poultry in Asia and the Middle East and has infected people in 15 countries. The virus must be transmissible through air for a pandemic to occur, and Fouchier and his colleagues previously identified several H5N1 mutations linked to through aerosol or respiratory droplets. But, until now, the minimal set of mutations required for airborne transmission was not clear, hindering the ability of scientists to predict and prepare for pandemics.

In the new study, the researchers identified five mutations that are sufficient for airborne transmission of H5N1 between ferrets—one of the best models of influenza transmissibility available today. Two mutations improved the binding of the virus to cells in the of mammals; two other mutations enabled the virus to replicate more efficiently; and the remaining mutation increased the stability of the virus.

"This type of analysis provides a more complete picture of the changes that may constitute increased risk of H5N1 transmissibility," says Peter Palese of the Icahn School of Medicine at Mount Sinai, who coauthored an Essay accompanying the research paper. "Assessment of how adaptations in ferrets affect viral fitness, virulence, and transmission is sorely needed in order to gain a truly holistic perspective of the likelihood that these viruses might cause a pandemic and what characteristics such a pandemic might exhibit."

More information: Cell, Linster et al.: "Identification, Characterization, and Natural Selection of Mutations Driving Airborne Transmission of A/H5N1 virus." dx.doi.org/10.1016/j.cell.2014.02.040

Related Stories

Flu transmission work is urgent: Nature Comment

January 25, 2012

The author of an upcoming Nature paper about H5N1 argues in a Nature Comment article today that research into deadly pathogenic viruses must continue if pandemics are to be prevented. Yoshihiro Kawaoka suggests, after reviewing ...

H5N1 bird flu genes show nature can pick worrisome traits

October 23, 2013

(Medical Xpress)—In the beginning, all flu viruses came from birds. Over time, the virus evolved to adapt to other animals, including humans, as natural selection favored viruses with mutations that allowed them to more ...

Recommended for you

Experimental MERS vaccine shows promise in animal studies

July 28, 2015

A two-step regimen of experimental vaccines against Middle East respiratory syndrome (MERS) prompted immune responses in mice and rhesus macaques, report National Institutes of Health scientists who designed the vaccines. ...

Can social isolation fuel epidemics?

July 21, 2015

Conventional wisdom has it that the more people stay within their own social groups and avoid others, the less likely it is small disease outbreaks turn into full-blown epidemics. But the conventional wisdom is wrong, according ...

Lack of knowledge on animal disease leaves humans at risk

July 20, 2015

Researchers from the University of Sydney have painted the most detailed picture to date of major infectious diseases shared between wildlife and livestock, and found a huge gap in knowledge about diseases which could spread ...

IBD genetically similar in Europeans and non-Europeans

July 20, 2015

The first genetic study of inflammatory bowel disease (IBD) to include individuals from diverse populations has shown that the regions of the genome underlying the disease are consistent around the world. This study, conducted ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.