Scientists identify metabolic link between aging, Parkinson's

May 30, 2014 by Chris Bryant
Immunohistochemistry for alpha-synuclein showing positive staining (brown) of an intraneural Lewy-body in the Substantia nigra in Parkinson's disease. Credit: Wikipedia

(Medical Xpress)—University of Alabama researchers identified within animal models an enzyme that links genetic pathways that control aging with the death of dopamine neurons – a clinical hallmark of Parkinson's disease.

Further study is needed, but the could later prove a target, the scientists said, for boosting efforts to prevent or reduce problems associated with the malfunction of dopamine-producing neurons in the brains of diseased patients.

"Discerning metabolic factors that maintain the health of cells from those that make an animal live longer has remained an elusive goal," said Dr. Guy Caldwell, UA professor of and the paper's principal author. "This is a step in that direction."

The research shows the "molecular intersection" where aging-associated degeneration and neurodegenerative diseases, like Parkinson's, meet, said Caldwell.

Scheduled for publication in the July 1 issue of Cell Metabolism, the findings show that a gene the scientists discovered to be "neuroprotective" also codes for a basic enzyme in the breakdown of glucose, in the pathway of glycolysis. Glycolysis is the primary cellular pathway by which cells break down sugar to generate energy.

Fourteen of the paper's 17 co-authors, including Drs. Janis O'Donnell and Kim Caldwell, professors of biological sciences, are, or were at the time of the study, affiliated with UA, including multiple undergraduate students.

Adam Knight, a two-time UA graduate now pursuing a doctorate at the University of Cambridge, is the lead author. Dr. Xioahui Yan, a UA post-doctoral scientist, and current UA doctoral students, Siyuan Zhang and Rami Ajjuri, were also key contributors.

Research results were drawn from UA lab animal models including nematodes, worms known as C. elegans, as well as fruit flies, known as Drosophila melanogaster. Additional tests were conducted by collaborators at Harvard University who used neurons isolated from the brains of mice to corroborate the UA findings.

The six-year study began, Caldwell said, by accumulating a list of 625 genes that previous research had shown were involved in both aging and molecular problems associated with Parkinson's.

Through a multi-tiered screening process, researchers in the Caldwell lab identified several genetic factors that exhibited a functional effect in the worms, but then homed in on what would become the targeted enzyme, known as GPI-1, or glucose-6-phosphate isomerase. This enzyme has a well established role in the process of glycolysis.

When researchers in O'Donnell's lab used genetic and biochemical techniques to make this enzyme inoperable in fruit flies, the flies' abilities to move were hampered and their neurons in their brains were more easily damaged.

"Nematodes and are very different," O'Donnell said, "so the discovery of this connection between neuron health and this enzyme in both organisms, as well as in mouse neurons, is very exciting because it tells us that we've detected is likely to be important in our brains as well."

As average life spans, and the percentage of elderly, both increase, it becomes increasingly important, Caldwell said, to seek measures that could potentially help those extended years become healthier ones.

"Research can help us distinguish between things that keep our neurons healthy versus things that simply keep us alive," he said. "That distinction between life span and health span is becoming increasingly important as our population ages."

The project also further validated the use of systems to more quickly focus on potential therapeutic targets.

"It shows how we can narrow down those growing lists of genetic modifiers that are being found in patient populations and find the ones that functionally matter to neuron survival," Caldwell said.

The research, funded by National Institutes of Health grants to both Caldwell and O'Donnell, also provided UA students an opportunity to positively impact their professional futures.

"It highlights how undergraduate researchers can play a substantial role in major biomedical research," Caldwell said. Undergraduate co-authors were funded through a grant from the Howard Hughes Medical Institute and via donations from Parkinson's patient support groups in Huntsville and Birmingham.

Explore further: Researchers hone in on a protein's precise role in disease prevention

Related Stories

Recommended for you

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

No cable spaghetti in the brain

November 24, 2015

Our brain is a mysterious machine. Billions of nerve cells are connected such that they store information as efficiently as books are stored in a well-organized library. To this date, many details remain unclear, for instance ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.