The beautiful brain cells you don't know about

by Sarah Bates
Glia in a mouse brain. Credit: Jonathan Cohen/NIH

The number of nerve cells in the human brain sounds impressive: 100 billion. And it is.

But may make up as little as 15 percent of cells in the brain. The other cells are called , or glia.

Glia are the rising stars of the neuroscience universe. Once delegated to simply a supporting role for neurons, these cells are now thought to play an important part in , learning and memory.

A 2013 workshop funded by the National Science Foundation (NSF) enabled researchers who study learning and memory to get together (many for the first time) and reconsider glia's function.

"It was paradigm-shifting," said R. Douglas Fields, a neurobiologist at the National Institutes of Health and meeting organizer. "Everyone left enthused about the enormous potential for understanding , especially learning and memory by studying how all the cells in the brain work together, rather than focusing exclusively on neurons."

In fact, Fields and other brain researchers who specialize in glia have since called for a greater focus on non-neuronal cells as part of the BRAIN Initiative, a collaborative research project announced by the Obama administration in April 2013.

Star-shaped glia called astrocytes (red) are the most abundant cell in the human brain. Young oligodendrocytes (green) are glia that help insulate nerve cell axons in the brain. The blue cells are neurons. Credit: Jonathan Cohen/NIH

When you learn something, how to catch a ball or use an equation, information is transmitted along the spindly arms of neurons via electrical signals. At the same time, glia called oligodendrocytes work to insulate these particular arms with a fatty substance called myelin so the information flows more efficiently.

Some studies show that glial cells known as astrocytes may have an even more active role in learning. Astrocytes may release chemicals that strengthen newly formed connections between neurons, making it more likely you'll be able to remember a new face, or the name of your co-worker's beloved golden retriever.

Understanding how we learn requires that scientists and engineers take a holistic approach to brain research.

An oligodendrocyte (green) extends multiple branches to contact the nerve cells' axons (purple) and wrap myelin insulation around them. Credit: R. Douglas Fields/NIH

NSF-funded research centers such as the Center of Excellence for Learning in Education, Science and Technology and the Temporal Dynamics of Learning Center integrate experimentation, modeling and technical application to help us understand what's really going on inside the . And to use that knowledge to educate students and to build intelligent technologies.

Astrocytes from a rat brain. Credit: Jonathan Cohen/NIH


add to favorites email to friend print save as pdf

Related Stories

Learning early in life may help keep brain cells alive

May 27, 2014

According to a recently published study in Frontiers in Neuroscience, Rutgers behavioral and systems neuroscientist Tracey Shors, who co-authored the study, found that the newborn brain cells in young rats t ...

Learning brakes in the brain

May 13, 2014

A brain capable of learning is important for survival: only those who learn can endure in the natural world. When it learns, the brain stores new information by changing the strength of the junctions that ...

Milestone in the regeneration of brain cells

Aug 20, 2007

The majority of cells in the human brain are not nerve cells but star-shaped glia cells, the so called “astroglia”. “Glia means “glue”, explains Götz. “As befits their name, until now these cells have been regarded ...

Recommended for you

Neurons express 'gloss' using three perceptual parameters

Sep 19, 2014

Japanese researchers showed monkeys a number of images representing various glosses and then they measured the responses of 39 neurons by using microelectrodes. They found that a specific population of neurons ...

Scientists show rise and fall of brain volume

Sep 19, 2014

(Medical Xpress)—We can witness our bodies mature, then gradually grow wrinkled and weaker with age, but it is only recently that scientists have been able to track a similar progression in the nerve bundles ...

User comments

Adjust slider to filter visible comments by rank

Display comments: newest first

JVK
1 / 5 (1) Jun 05, 2014
The conserved molecular mechanisms of cell type differentiation link nutrient-dependent changes in the microRNA/messenger RNA balance to amino acid substitutions and variations in the number of neuronal and nonneuronal cells during species-specific brain development, which is controlled by the epigenetic effects of pheromones on the physiology of vertebrate reproduction. See this 2007 news release where R. Douglas Fields links "...brain cells you don't know about" to gonadotropin releasing hormone-dependent cell type differentiation via Celeste Wirsig's works and mine. http://articles.c...eromones