Learning early in life may help keep brain cells alive

May 27, 2014 by Robin Lally, Rutgers University
Learning early in life may help keep brain cells alive
Learning in adolescence may play a role in keeping brain cells alive.

According to a recently published study in Frontiers in Neuroscience, Rutgers behavioral and systems neuroscientist Tracey Shors, who co-authored the study, found that the newborn brain cells in young rats that were successful at learning survived while the same brain cells in animals that didn't master the task died quickly.

"In those that didn't learn, three weeks after the new brain cells were made, nearly one-half of them were no longer there," said Shors, professor in the Department of Psychology and Center for Collaborative Neuroscience at Rutgers. "But in those that learned, it was hard to count. There were so many that were still alive."

The study is important, Shors says, because it suggests that the massive proliferation of new brain cells most likely helps young animals leave the protectiveness of their mothers and face dangers, challenges and opportunities of adulthood.

Scientists have known for years that the neurons in , which are significant but fewer in numbers than during puberty, could be saved with , but they did not know if this would be the case for young rats that produce two to four times more neurons than adult animals.

By examining the hippocampus – a portion of the brain associated with the process of learning – after the rats learned to associate a sound with a motor response, scientists found that the new brain cells injected with dye a few weeks earlier were still alive in those that had learned the task while the cells in those who had failed did not survive.

"It's not that learning makes more cells," says Shors. "It's that the process of learning keeps new cells alive that are already present at the time of the learning experience."

Since the process of producing new brain cells on a is similar in animals, including humans, Shors says ensuring that adolescent children learn at optimal levels is critical.

"What it has shown me, especially as an educator, is how difficult it is to achieve optimal learning for our students. You don't want the material to be too easy to learn and yet still have it too difficult where the student doesn't learn and gives up," Shors says.

So, what does this mean for the 12-year-old adolescent boy or girl?

While scientists can't measure individual in humans, Shors says this study, on the cellular level, provides a look at what is happening in the adolescent brain and provides a window into the amazing ability the brain has to reorganize itself and form new neural connections at such a transformational time in our lives.

"Adolescents are trying to figure out who they are now, who they want to be when they grow up and are at school in a learning environment all day long," says Shors. "The brain has to have a lot of strength to respond to all those experiences."

Explore further: 'Chemo brain': Study finds fog-like condition related to chemotherapy's effect on new brain cells and rhythms

More information: The study is available online: journal.frontiersin.org/Journa … nins.2014.00070/full

Related Stories

'Chemo brain': Study finds fog-like condition related to chemotherapy's effect on new brain cells and rhythms

February 21, 2013
(Medical Xpress)—It's not unusual for cancer patients being treated with chemotherapy to complain about not being able to think clearly, connect thoughts or concentrate on daily tasks. The complaint – often referred to ...

Moderate drinking decreases number of new brain cells

October 24, 2012
Drinking a couple of glasses of wine each day has generally been considered a good way to promote cardiovascular and brain health. But a new Rutgers University study indicates that there is a fine line between moderate and ...

Learning brakes in the brain

May 13, 2014
A brain capable of learning is important for survival: only those who learn can endure in the natural world. When it learns, the brain stores new information by changing the strength of the junctions that connect its nerve ...

Researchers discover how inhibitory neurons behave during critical periods of learning

August 25, 2013
We've all heard the saying "you can't teach an old dog new tricks." Now neuroscientists are beginning to explain the science behind the adage.

Switching learning on

December 12, 2013
Neurobiologist from the Friedrich Miescher Institute for Biomedical Research show how a network of neurons in hippocampus and cortex switches states to turn on and off learning in the adult. They further show how a stimulating ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

russell_russell
not rated yet May 27, 2014
Again.
You can not prevent learning.
In a stimulus poor or ill suited environment you become a vegetable from the input learned (stored).

If you believe there is an optimal way to acquire capabilities or abilities for a specific task, then you believe the life forms you have in mind have only one sense or way to store input.

Learning from input, consciously or unconsciously. Did you learn the concept of Fourier before you perceived sound? Yes, provided the model is correct.

You do not have to 'save' neurons through use. You have to damage new cells to acquire and express the same expressions neurons that were damaged previously from the same experience.

See below.

http://medicalxpr...ain.html

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.