Cellular force that drives allergy and asthma can be blocked by interferon

A mechanism that could underlie the development of cells that drive asthma and allergies has been uncovered by immunology researchers at UT Southwestern Medical Center.

Asthma and allergies are both driven by an inappropriate activation of the immune system, primarily a subtype of known as T helper 2 cells, or Th2 cells. These cells are normally responsible for defense against parasites, but are also the main culprits behind the symptoms of and allergies.

Dr. David Farrar, Associate Professor of Immunology and Molecular Biology at UT Southwestern, and his team found that the antiviral molecules known as type I interferons (IFNs) block the development of these allergy- and asthma-driving Th2 cells.

"The fact that interferon could stop the activation of these harmful cells was of particular interest because interferons are already approved by the Food and Drug Administration for the treatment of other diseases, such as multiple sclerosis and hepatitis," said Dr. Farrar, who holds the J. Wayne Streilein, M.D. Professorship in Immunology.

The work, published in the Journal of Immunology, could eventually give rise to new therapies.

To demonstrate the prevalence of asthma, in the United States about 13 percent of adults – nearly 30 million people – have received a diagnosis of asthma. This frequency compares to 11 percent who have been diagnosed with heart disease and 8 percent who have had any form of cancer, according to the Centers for Disease Control and Prevention. Asthma is reported more often among women than men, among Caucasians, and in families with limited economic resources. Allergies, too, are prevalent, with more than 17.5 million people suffering from hay fever in the U.S.

The development of Th2 cells is stimulated by a particular immune molecule that triggers the production of a protein called GATA3. Frequently referred to as the master regulator of Th2 cell development, GATA3 turns on the genes that distinguish Th2 cells from other cell types, including other T cells.

Dr. Farrar's group found that type I IFNs block this process by targeting a part of the GATA3 gene known as exon 1a and turning it off, thereby inhibiting the production of the GATA3 protein and, consequently, the development of Th2 cells.

"Targeting this pathway may lead to permanent tolerance of these cells to allergens," said Dr. Farrar.  "We are currently pursuing studies that may lead to clinical trials that will determine whether interferon can be used to treat allergic asthma patients."

Dr. Farrar's lab studies how a collective group of proteins called cytokines regulate immune responses. Type 1 interferon, the first immune cytokine discovered, is one of the very first lines of defense against viruses. The protein was initially identified based on its ability to inhibit influenza virus.  Since then, scientists have discovered that almost any cell in the body can secrete interferon if it becomes infected with certain viruses, and that most can respond to .

add to favorites email to friend print save as pdf

Related Stories

Dying cells trigger immunity

May 30, 2014

The immune system produces various types of immune cells—some are pre-programmed to target pathogens that the immune system has previously encountered, while others are 'naive' and retain the ability to ...

Interferon therapy offers new hope for kids with asthma

Feb 25, 2014

A new and emerging field in medicine - which involves the study of a group of proteins known as Interferons - could help unlock therapies for a range of diseases, according to a researcher who has recently ...

Basis of allergic reaction to birch pollen identified

Jun 05, 2014

In Austria alone around 400,000 people are afflicted by a birch pollen allergy and its associated food intolerances. Why so many people have allergic reactions to birch pollen has still not been completely ...

Recommended for you

Structured education program beneficial for anaphylaxis

Nov 21, 2014

(HealthDay)—A structured education intervention improves knowledge and emergency management for patients at risk for anaphylaxis and their caregivers, according to a study published online Nov. 19 in Allergy.

Every step you take: STING pathway key to tumor immunity

Nov 20, 2014

A recently discovered protein complex known as STING plays a crucial role in detecting the presence of tumor cells and promoting an aggressive anti-tumor response by the body's innate immune system, according to two separate ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.