Elucidating the pathogenic mechanism of meningococcal meningitis

Elucidating the pathogenic mechanism of meningococcal meningitis
Colonization of brain vessels by N. meningitidis Immunofluorescence analysis of a human brain section infected by N. meningitidis. The bacteria (red) have colonized the brain's endothelial cells that express CD147 (green). (Cell nuclei are blue) Credit: Nature Medicine

Neisseria meningitidis, also called meningococcus, is a bacterium responsible for meningitis and septicemia. Its most serious form, purpura fulminans, is often fatal. This bacterium, which is naturally present in humans in the nasopharynx, is pathogenic if it reaches the blood stream. Teams led by Dr. Sandrine Bourdoulous, CNRS senior researcher at the Institut Cochin, have deciphered the molecular events through which meningococci target blood vessels and colonize them. This work opens a path to new therapeutic perspectives for treating vascular problems caused by this type of invasive infection. The study was published on June 1, 2014 in Nature Medicine.

When the bacterium Neisseria meningitidis multiplies in the blood, it interacts with the that line the inside of and adheres to their walls. In the skin and mucous membranes, meningococcal infection in the vessels creates hemorrhagic skin lesions (called purpura) due to bleeding in the tissues. Those can rapidly progress to a serious and often fatal form of the disease (purpura fulminans). In the brain, when meningococci adhere to the vessels they can pass through the blood-brain barrier, and cause meningitis when they invade the meninges.

Teams of researchers have deciphered how Neisseria meningitidis adheres to blood vessels, a step that underpins the bacterium's pathogenicity. In blood vessels they have identified receptor CD147, whose expression is essential for initial meningococcal adherence to endothelial cells. If this receptor is absent, N. meningitidis cannot implant in blood vessels and colonize them.

It is a well-known fact that the adherence process of meningococcal bacteria to human cells relies on pili, long filaments that are expressed by the bacterium and composed of different sub-units (pilins). However, the pilins specifically involved in N. meningitidis' adherence to blood vessels had never been identified. The researchers have determined that two pilins, PilE and PilV, interact directly with the CD147 receptor. Without them, meningococci cannot adhere to endothelial cells.

Humans are the only species that can be infected by meningococci. To show in vivo that pilins PilE and PilV are essential for N. meningitidis to colonize the vascular network, the researchers used a mouse model, where the mice were immunodeficient and grafted with human skin, keeping the functional human vessels within the graft to reproduce in mice the infection stages as observed in human skin. These mice were then infected by meningococci naturally having pilins PilE and PilV, or meningococci in which the expression of these pilins had been artificially suppressed. The human blood vessels were only infected by meningococci displaying PilE and PilV, which confirms that these two pilins are essential to the bacterial colonization process.

The researchers also showed in an ex vivo infection model that cerebral vessels and meninges, particularly rich in CD147 receptors, allow colonization by meningococci, unlike other parts of the brain.

The scientists now wish to develop a new type of vaccine (to complement those already available) that would block the interaction between N. meningitidis and the CD147 receptors, thereby stopping the from colonizing the vessels.

More information: "Pathogenic Neisseria meningitidis utilizes CD147 for vascular colonisation." Sandra C. Bernard, Nandi Simpson, Olivier Join-Lambert, Christian Federici, Marie-Pierre Laran-Chich, Nawal Maïssa, Haniaa Bouzinba-Ségard, Philippe C. Morand, Fabrice Chretien, Saïd Taouji, Eric Chevet, Sébastien Janel, Frank Lafont, Mathieu Coureuil, Audrey Segura, Florence Niedergang, Stefano Marullo, Pierre-Olivier Couraud, Xavier Nassif and Sandrine Bourdoulous. Nature Medicine. June 1, 2014. DOI: 10.1038/nm.3563

add to favorites email to friend print save as pdf

Related Stories

Resistance to antibiotics can be drawback for bacteria

Jan 07, 2010

Neisseria meningitidis, the meningococcus, is a bacterium that can cause diseases with high fatality rates, and there has therefore been considerable concern that, like other bacteria, it might become resistant to antibiotics. ...

Recommended for you

Student seeks to improve pneumonia vaccines

12 hours ago

Almost a million Americans fall ill with pneumonia each year. Nearly half of these cases require hospitalization, and 5-7 percent are fatal. Current vaccines provide protection against some strains of the ...

Seabed solution for cold sores

14 hours ago

The blue blood of abalone, a seabed delicacy could be used to combat common cold sores and related herpes virus following breakthrough research at the University of Sydney.

Better living through mitochondrial derived vesicles

Aug 19, 2014

(Medical Xpress)—As principal transformers of bacteria, organelles, synapses, and cells, vesicles might be said to be the stuff of life. One need look no further than the rapid rise to prominence of The ...

Zebrafish help to unravel Alzheimer's disease

Aug 19, 2014

New fundamental knowledge about the regulation of stem cells in the nerve tissue of zebrafish embryos results in surprising insights into neurodegenerative disease processes in the human brain. A new study by scientists at ...

User comments