New type of cell communication regulates blood vessel formation and tumor growth

March 20, 2014

When tumours grow, new blood vessels are formed that deliver oxygen and nutrients to the tumour cells. A research group at Uppsala University has discovered a new type of cell communication that results in suppressed blood vessel formation and delayed tumour growth. The results might explain why healthy individuals can have microscopic tumours for many years, which do not progress without formation of new blood vessels.

Communication between cells controls their behaviour, e.g. survival, growth and mobility. In tumours, communication between and blood vessel cells regulates the formation of new blood vessels that is required for tumours to grow.

One of the most important components controlling is the growth factor VEGF. By binding to a receptor on the surface of blood vessel cells VEGF can induce signals that in turn regulate if new blood vessels should be formed or not.

In the present study, published in Developmental Cell, the researchers have studied how an additional molecule participates in the cell communication in response to VEGF. If this molecule, called NRP1, is present on the same cell as the VEGF-receptor a positive signal is delivered into the cell, leading to . On the other hand, if NRP1 is present on another adjacent cell, e.g. a tumour cell, binding of VEGF will lock the receptor to the cell surface and it will loose its ability to send a positive signal into the cell.

– We call this kind of inhibited signalling trans communication and it suppresses the formation of new blood vessels. This results in delayed tumour growth. If trans communication occurs very early in tumour development can be inhibited completely, says Lena Claesson-Welsh, professor at the Department of Immunology, Genetics and Pathology, who is responsible for the study.

Trans communication can also occur between cells of the same type. Therefore, in order for blood vessels to grow and form new vessels, trans communication between must be avoided. This can be achieved if NRP1 levels vary between the cells. I accordance with this, the research group also found that fluctuating NRP1 levels occur naturally in adjacent cells in in the eye.

Explore further: New strategy to attack tumor-feeding blood vessels

More information: Koch et al.(2014) Neuropilin-1 presented in trans to the endothelium arrests VEGFR2 endocytosis, preventing angiogenic signaling and tumor initiation, Developmental Cell, Volume: 28; Issue: 6

Related Stories

New strategy to attack tumor-feeding blood vessels

June 6, 2011
Scientists at the Walter and Eliza Hall Institute have discovered a key molecule needed to kill the blood vessels that supply tumours.

Jamming in tumors: How an immune molecule makes cancer cells starve

January 29, 2014
The name of the Interferon-beta (IFN-β) molecule and the English word "interfere" go back to the same Latin roots. And interfering is exactly what this messenger molecule, whose formation is increased in infections and cancer ...

Partially blocking blood vessels' energy source may stop cancer growth, blindness, other conditions

December 12, 2013
Inhibiting the formation of new blood vessels is a common strategy for treating a range of conditions such as cancer, inflammatory diseases, and age-related macular degeneration. Unfortunately, drug inefficiency, resistance, ...

New target for the fight against cancer as a result of excessive blood vessel formation

August 1, 2013
New blood vessel formation (angiogenesis) stimulates the growth of cancer and other diseases. Anti-angiogenic inhibitors slow down cancer growth by disrupting the blood supply to the tumor. To date, the success of these treatments ...

Fasting time for tumour cells

March 15, 2013
(Medical Xpress)—Tumours need a steady supply of sufficient nutrients to be able to grow. In order to secure the nutrient availability, they secrete messenger compounds to stimulate neighbouring blood vessels to proliferate ...

Recommended for you

Study may explain failure of retinoic acid trials against breast cancer

July 25, 2017
Estrogen-positive breast cancers are often treated with anti-estrogen therapies. But about half of these cancers contain a subpopulation of cells marked by the protein cytokeratin 5 (CK5), which resists treatment—and breast ...

Physical activity could combat fatigue, cognitive decline in cancer survivors

July 25, 2017
A new study indicates that cancer patients and survivors have a ready weapon against fatigue and "chemo brain": a brisk walk.

Breaking the genetic resistance of lung cancer and melanoma

July 25, 2017
Researchers from Monash University and the Memorial Sloan Kettering Cancer Center (MSKCC, New York) have discovered why some cancers – particularly lung cancer and melanoma – are able to quickly develop deadly resistance ...

New therapeutic approach for difficult-to-treat subtype of ovarian cancer identified

July 24, 2017
A potential new therapeutic strategy for a difficult-to-treat form of ovarian cancer has been discovered by Wistar scientists. The findings were published online in Nature Cell Biology.

Immune cells the missing ingredient in new bladder cancer treatment

July 24, 2017
New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

Anti-cancer chemotherapeutic agent inhibits glioblastoma growth and radiation resistance

July 24, 2017
Glioblastoma is a primary brain tumor with dismal survival rates, even after treatment with surgery, chemotherapy and radiation. A small subpopulation of tumor cells—glioma stem cells—is responsible for glioblastoma's ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.