Fasting time for tumour cells

March 15, 2013
The feedback loop of the tumour: The cancer cells secrete the growth-factor VEGF (yellow) in order to stimulate nearby blood vessels to introduce small sprouts into the tumour. At the same time, the cells also express VEGFR-2 on their surface, which the VEGF binds to. In this way, the cancer cells are stimulated to produce even more VEGF. Credit: MPI for Neurological Research

(Medical Xpress)—Tumours need a steady supply of sufficient nutrients to be able to grow. In order to secure the nutrient availability, they secrete messenger compounds to stimulate neighbouring blood vessels to proliferate and sprout. Scientists from the Max Planck Institute for Neurological Research in Cologne, Germany, have now identified a new positive feedback loop involving the Vascular Endothelial Growth Factor (VEGF) and its receptor 'VEGFR-2' in human lung adenocarcinoma.

When VEGF binds to VEGFR-2 on cancer cells, secretion of the growth-factor itself is boosted consequently accelerating tumour growth. In experiments on mice with lung cancer, the scientists switched off the growth-factor and proteins responsible for this signalling thereby slowing down tumour growth. The tumours were even reduced in size by employing other inhibitors in combination. The researchers thus proved the existence of VEGF Receptor-2 on tumour cells and described a new signalling pathway in that triggers the sprouting of new blood vessels. In addition, they also learnt from examinations of that therapy with these inhibitors only makes sense if the cancer cells express large numbers of VEGFR2. These results can contribute to developing new cancer therapies.

Tumour cells often remain in a dormant state before dividing in an uncontrolled manner. During this dormant period, approximately as many cells die off as regenerate. Change in the tumour cell genetics leads to messenger compounds being secreted that stimulate proliferation of blood vessels. Only then the tumour can begin to expand. Without this transition from dormant to , the growth of cancer cells would be limited to a dimension harmless for the body.

Scientists at the Max Planck Institute for want to use this as a point of attack for tumour therapy. To this end, they investigated the effect of VEGF, which enables blood vessels to expand. According to the research group led by Roland Ullrich, VEGF also acts directly on the secreting tumour cells. These cells re-absorb it via VEGFR-2 and thus produce even more VEGF. "This positive feedback loop causes more and more new blood vessels to generate and the cancer to grow even faster", explains Ullrich. "We therefore wanted to find out what happens when we interrupt them." The scientist's idea: "to cut off the tumour from the supply of nutrients – simply starving it out". Ullrich compares the fight against cancer with the siege of a fortress: "You don't have to necessarily storm the castle to overcome the enemy. It is sufficient to turn off the water-supply."

In the second part of their study, they therefore experimented with mice that exhibited a specific form of lung cancer and blocked their VEGFR-2. "And we did detect a deceleration of the cancer growth in the animals", says Ullrich. "An even more impressive result was obtained when we administered an additional inhibitor." This inhibitor disrupts what is known as the MAPK signalling pathway, which drives growth of tumour cells, among other things. Administered individually, both inhibitors only slowed down the cancer growth, while in combination they were able to actually shrink the tumour. The scientists therefore assume a connection between the MAPK signalling pathway and VEGFR2 inhibition. "If the supply of nutrients to the cells is cut off, they simply begin to grow more vigorously", explains Ullrich, "and we can prevent that with the help of the second inhibitor."

However, not all types of cancer are suited to this kind of treatment. These inhibitors can only be effective if the cancer cells also express the receptors for VEGF (VEGFR-2) on their membranes in moderate to high numbers. According to the results of the Cologne scientists, about every fifth lung cancer patient has VEGFR-2 on the and could therefore be treated in this way.

Explore further: New strategy to attack tumor-feeding blood vessels

More information: Chatterjee, S. et al. Tumor VEGF: VEGFR2 autocrine feed-forward loop triggers angiogenesis in lung cancer, J Clin Invest. 2013;123(4):xxxx–yyyy. doi:10.1172/JCI65385

Related Stories

New strategy to attack tumor-feeding blood vessels

June 6, 2011
Scientists at the Walter and Eliza Hall Institute have discovered a key molecule needed to kill the blood vessels that supply tumours.

New role for Vascular Endothelial Growth Factor in regulating skin cancer stem cells

October 19, 2011
Skin squamous cell carcinomas are amongst the most frequent cancers in humans. Recent studies suggest that skin squamous cell carcinoma, like many other human cancers, contain particular cancer cells, known as cancer stem ...

Scientists aim to kill lung tumors

May 4, 2012
Lung cancer is the leading cause of cancer death throughout the world. Standard treatment methods do not usually result in long-term recovery. In addition to the proliferation of the tumour cells, the growth of blood vessels ...

Tumor blood vessels prevent the spread of cancer cells

February 11, 2013
A lack of the protein endoglin in the blood vessels of tumour-bearing mice enables the spread of daughter tumours, according to researchers at Karolinska Institutet and Lund University in Sweden in a study published in the ...

Culprit behind unchecked angiogenesis identified

March 29, 2012
German researchers unravel a critical regulatory mechanism controlling blood vessel growth that might help solve drug resistance problems in the future.

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.