Immune response may cause harm in brain injuries, disorders

Could the body's own immune system play a role in memory impairment and cognitive dysfunction associated with conditions like chronic epilepsy, Alzheimer's dementia and concussions? Cleveland Clinic researchers believe so, based on a study published online by PLOS ONE.

The study focuses on the role of a protein known as S100B, which serves as a biomarker for . Normally, S100B is found only in the brain and spinal column. However, following a brain injury, it can leak through the into the blood.

Once S100B enters the bloodstream, it is identified as an intruder by the immune system, which releases antibodies to attack the protein.

"Our results show an unexpected role for S100B in the regulation of a neuro-, connecting the function of the brain to the ," said Damir Janigro, Ph.D., senior author and molecular medicine researcher at Cleveland Clinic's Lerner Research Institute. "Uptake of S100B was prominent in cells that are known to be involved in regulating immune responses. Repeated increases of S100B – whether due to , Alzheimer's disease, or repeated hits to the head in sporting events – may thus become boosters of an against the brain, which may slowly but inexorably result in chronic neurological disease."

These findings are the first to report a connection between a brain-derived protein and an immune response in the context of normal immunological function.

"Prior to this research, S100B autoantibodies have been described in a variety of diseases, primarily in Alzheimer's dementia and chronic epilepsy. More recently, repeated subconcussive episodes in football players included a post-game increase of S100B, followed by an autoimmune response against the protein," Janigro said. "Therefore, it appears that autoimmunity against brain proteins may be one of the initial steps in the progression towards posttraumatic cognitive decline."

The study tested the hypothesis that the presence of S100B in extracranial tissue is due to the production of antigen-presenting cells in the blood, which may induce the production of auto-antibodies against S100B. To test this hypothesis, researchers used animal models of seizures, enrolled patients undergoing repeated disruption of the blood-brain barrier, and collected blood samples from epileptic patients.

If further research confirms the study's findings, treatments for may include anti-inflammatory therapy or immunomodulators to decrease the autoimmune response, as has been done in the treatment of multiple sclerosis and myasthenia gravis.

add to favorites email to friend print save as pdf

Related Stories

On-field blood test can diagnose sports concussions

Jan 08, 2014

A brain protein, S100B, which may soon be detected by a simple finger-stick blood test, accurately distinguishes a sports-related concussion from sports exertion, according to a study of college athletes in Rochester, N.Y., ...

Researchers discover neuroprotective role of immune cell

Jul 22, 2014

A type of immune cell widely believed to exacerbate chronic adult brain diseases, such as Alzheimer's disease and multiple sclerosis (MS), can actually protect the brain from traumatic brain injury (TBI) and may slow the ...

New knowledge about the brain's effective bouncer

Jul 16, 2014

Research from the University of Copenhagen is shedding new light on the brain's complicated barrier tissue. The blood-brain barrier is an effective barrier which protects the brain, but which at the same ...

Recommended for you

Among gut microbes, strains, not just species, matter

3 hours ago

A large community of microorganisms calls the human digestive tract home. This dynamic conglomerate of microscopic life forms - the gut microbiome - is vital to how people metabolize various nutrients in ...

Scientists develop compound to fight MRSA

3 hours ago

Microbiologists and chemists at the University of South Florida have developed and patented a synthetic compound that has shown antibiotic action against methicillin resistant Staphylococcus aureus, also k ...

Hydrogen sulfide could help lower blood pressure

4 hours ago

A gas that gives rotten eggs their distinctive odour could one day form the basis of new cardiovascular therapies. Research has indicated that a new compound, called AP39, which generates minute quantities ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.