Insular cortex alterations in mouse models of autism

July 31, 2014
The insular cortex of autistic mice is already so strongly activated by a single sensory modality (here a sound), that it is unable to perform its role in integrating information from multiple sources. Credit: MPI of Neurobiology / Gogolla

The insular cortex is an integral "hub", combining sensory, emotional and cognitive content. Not surprisingly, alterations in insular structure and function have been reported in many psychiatric disorders, such as anxiety disorders, depression, addiction and autism spectrum disorders (ASD). Scientists from Harvard University and the Max-Planck Institute of Neurobiology in Martinsried now describe consistent alterations in integrative processing of the insular cortex across autism mouse models of diverse etiologies. In particular, the delicate balance between excitation and inhibition in the autistic brains was disturbed, but could be pharmacologically re-adjusted. The results could help the development of novel diagnostic and therapeutic strategies.

Autism is a neurodevelopmental disorder characterized by impaired social interaction, verbal and non-verbal communication, and by restricted and repetitive behaviours. Diagnosis is solely based on behavioural analysis as biological markers and neurological underpinnings remain unknown. This makes the development of novel therapeutic strategies extremely difficult.

As the cellular basis of cannot be addressed in human patients, scientists have developed a number of mouse models for the disease. Similar to humans, mice are social animals and communicate through species-specific vocalizations. The mouse models harbour all diagnostic hallmark criteria of autism, such as repetitive, stereotypic behaviours and deficits in social interactions and communication.

Nadine Gogolla and her colleagues in the laboratory of Takao Hensch at Harvard University have now searched for common neural circuit alterations in mouse models of autism. They concentrated on the insular cortex, a brain structure that contributes to social, emotional and cognitive functions. 'We wanted to know whether we can detect differences in the way the insular cortex processes information in healthy or autism-like mice', says Nadine Gogolla, who was recently appointed Leader of a Research Group at the Max Planck Institute of Neurobiology.

As the researchers now report, the insular cortex of healthy mice integrates stimuli from different sensory modalities and reacts more strongly when two different stimuli are presented concomitantly (e.g. a sound and a touch). 'We recognize a rose more easily when we smell and see it rather than when we just see or smell it' says Nadine Gogolla. This capacity of combining sensory stimuli was consistently affected in all autism models the researchers looked at. Interestingly, often one sense alone elicited such a strong response that adding a second modality did not add further information. This is very reminiscent of the sensory hyper-responsiveness experienced by many autistic patients. The scientist further discovered that the insular cortex of adult autism-model mice resembled the activation patterns observed in very young control mice. 'It seemed as if the insular cortex of the autism-models did not mature properly after birth', says Gogolla.

For proper brain function, excitation and inhibition have to be in equilibrium. In the now identified part of the insular cortex, the scientists found that this equilibrium was disturbed. In one of the mouse models, inhibitory contacts between nerve cells were strongly reduced.

To test the influence of this reduction on sensory processing, the researchers gave mice the drug Diazepam, which is also known under the trade name Valium, to boost inhibitory transmission in the brain. Indeed, this treatment transiently rescued the capacity of the insular cortex to combine stimuli of different sensory modalities. The balance between excitation and inhibition in the brain is established after birth. The scientists thus treated young animals over several days with Diazepam. This treatment was efficient in reestablishing the insular cortex capacity for sensory integration permanently, even in adult mice that did not received any further treatment. Interestingly, also the stereotypic grooming of the animals was significantly reduced.

All autism models investigated showed alterations in inhibitory molecules. However, the alterations were very diverse. While in some models certain molecules were reduced, the opposite was true in another model. These results suggest that the disequilibrium between excitation and inhibition may be an important factor in the neuropathology of autism. However, future therapies will need to be carefully tailored to each particular subgroup of autism. For instance, an artificial boost of inhibition through a drug like Diazepam in healthy mice can throw the delicate equilibrium off and create changes in the similar to those seen in the models. Whether a therapeutic strategy aimed on keeping the brain's equilibrium between excitation and inhibition could be useful and if so, how to test the individuals' status of the excitation/inhibition balance and how to implement individually tailored treatments, would need to be established through further studies and pre-clinical tests.

Explore further: 'Disgusted' rats teaching scientists about nausea, work may lead to new cancer treatments

Related Stories

Gene family mutation, autism linked

January 28, 2014

(Medical Xpress)—Harvard Medical School researchers at McLean Hospital have found that a gene family linked to autism, EphB, is essential for proper brain wiring during development. The findings suggest that the abnormal ...

Low doses of antianxiety drugs rebalance the autistic brain

March 19, 2014

New research in mice suggests that autism is characterized by reduced activity of inhibitory neurons and increased activity of excitatory neurons in the brain, but balance can be restored with low doses of a well-known class ...

New mouse model may open autism treatment research avenues

July 30, 2014

The hallmark of an excellent researcher is an open mind. That flexibility and openness is what led Nina Schor, M.D., Ph.D., the William H. Eilinger Chair of Pediatrics at the University of Rochester, to follow a hunch about ...

Recommended for you

Low glycemic index diet reduces symptoms of autism in mice

June 9, 2015

Bread, cereal and other sugary processed foods cause rapid spikes and subsequent crashes in blood sugar. In contrast, diets made up of vegetables, fruits and whole grains are healthier, in part because they take longer to ...

Neuroscientists reveal autism's 'noisy' secret

May 26, 2015

Strapped into a motion-enabled simulator and wearing 3D glasses, 36 adolescent volunteers recently experienced what it was like to "travel" through a field of virtual stars. The experiments provided new and convention-busting ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.