Low doses of antianxiety drugs rebalance the autistic brain

March 19, 2014

New research in mice suggests that autism is characterized by reduced activity of inhibitory neurons and increased activity of excitatory neurons in the brain, but balance can be restored with low doses of a well-known class of drugs currently used in much higher doses to treat anxiety and epileptic seizures. The findings, which are reported in the March 19th issue of the Cell Press journal Neuron, point to a new therapeutic approach to managing autism.

"These are very exciting results because they suggest that existing drugs—called —might be useful in treatment of the core deficits in autism," says senior author Dr. William Catterall of the University of Washington, in Seattle.

In addition to finding that mice with autistic characteristics had an imbalance between the inhibitory and excitatory neurons in their brains, Dr. Catterall and his team found that reducing the effectiveness of in normal mice also induced some autism-related deficits in social behavior. Classical benzodiazepine drugs had the opposite effect, increasing the activity of inhibitory neurons and diminishing autistic behaviors.

"Our results provide strong evidence that increasing inhibitory neurotransmission is an effective approach to improvement of social interactions, repetitive behaviors, and cognitive deficits in a well-established animal model of autism, having some similar behavioral features as human ," says Dr. Catterall.

Therapeutic approaches to treat autistic traits in animal studies or in have primarily focused on reducing the activity of excitatory neurons, with only modest success to date. The results reported by Dr. Catterall and his colleagues suggest that augmenting the activity of opposing, inhibitory neurons could be an alternative strategy.

Clinical trials of classical benzodiazepines and next-generation drugs that have a similar mechanism of action are now needed to determine whether the researchers' findings in mice are relevant to humans. Astra-Zeneca and the National Institutes of Health have initiated one such trial.

Explore further: Competing impairment of neurons governs pathology of a severe form of epilepsy

More information: Neuron, Han et al.: "Enhancement of Inhibitory Neurotransmission by GABAA Receptors Having 2,3-Subunits Ameliorates Behavioral Deficits in a Mouse Model of Autism." dx.doi.org/10.1016/j.neuron.2014.01.016

Related Stories

Competing impairment of neurons governs pathology of a severe form of epilepsy

September 20, 2013
Dravet syndrome is a rare and severe form of epilepsy caused primarily by inherited loss-of-function mutations in a gene called SCN1A. This gene encodes a sodium ion channel known as Nav1.1 and is required for the proper ...

Low-dose sedative alleviates autistic-like behavior in mice with Dravet syndrome mutation

August 22, 2012
A low dose of the sedative clonazepam alleviated autistic-like behavior in mice with a mutation that causes Dravet syndrome in humans, University of Washington researchers have shown.

Protein family linked to autism suppresses the development of inhibitory synapses

January 28, 2013
Synapse development is promoted by a variety of cell adhesion molecules that connect neurons and organize synaptic proteins. Many of these adhesion molecules are linked to neurodevelopmental disorders; mutations in neuroligin ...

Brain cell activity imbalance may account for seizure susceptibility in Angelman syndrome

June 6, 2012
New research by scientists at the University of North Carolina School of Medicine may have pinpointed an underlying cause of the seizures that affect 90 percent of people with Angelman syndrome (AS), a neurodevelopmental ...

Autism: Birth hormone may control the expression of the syndrome in animals

February 6, 2014
The scientific community agrees that autism has its origins in early life—foetal and/or postnatal. The team led by Yehezkel Ben-Ari, Inserm Emeritus Research Director at the Mediterranean Institute of Neurobiology (INMED), ...

Childhood's end: ADHD, autism and schizophrenia tied to stronger inhibitory interactions in adolescent prefrontal cortex

March 14, 2014
(Medical Xpress)—Key cognitive functions such as working memory (which combines temporary storage and manipulation of information) and executive function (a set of mental processes that helps connect past experience with ...

Recommended for you

Touching helps build the sexual brain

September 21, 2017
Hormones or sexual experience? Which of these is crucial for the onset of puberty? It seems that when rats are touched on their genitals, their brain changes and puberty accelerates. In a new study publishing September 21 ...

Neuron types in brain are defined by gene activity shaping their communication patterns

September 21, 2017
In a major step forward in research, scientists at Cold Spring Harbor Laboratory (CSHL) today publish in Cell a discovery about the molecular-genetic basis of neuronal cell types. Neurons are the basic building blocks that ...

Gene immunotherapy protects against multiple sclerosis in mice

September 21, 2017
A potent and long-lasting gene immunotherapy approach prevents and reverses symptoms of multiple sclerosis in mice, according to a study published September 21st in the journal Molecular Therapy. Multiple sclerosis is an ...

Your neurons register familiar faces, whether you notice them or not

September 21, 2017
When people see an image of a person they recognize—the famous tennis player Roger Federer or actress Halle Berry, for instance—particular cells light up in the brain. Now, researchers reporting in Current Biology on ...

Highly precise wiring in the cerebral cortex

September 21, 2017
Our brains house extremely complex neuronal circuits whose detailed structures are still largely unknown. This is especially true for the cerebral cortex of mammals, where, among other things, vision, thoughts or spatial ...

Faulty cell signaling derails cerebral cortex development, could it lead to autism?

September 20, 2017
As the embryonic brain develops, an incredibly complex cascade of cellular events occur, starting with progenitors - the originating cells that generate neurons and spur proper cortex development. If this cascade malfunctions ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.