Scientists identify gene that plays a surprising role in combating aging

July 17, 2014

It is something of an eternal question: Can we slow or even reverse the aging process? Even though genetic manipulations can, in fact, alter some cellular dynamics, little is known about the mechanisms of the aging process in living organisms.

Now scientists from the Florida campus of The Scripps Research Institute (TSRI) have found in animal models that a single gene plays a surprising role in aging that can be detected early on in development, a discovery that could point toward the possibility of one day using therapeutics, even some commonly used ones, to manipulate the aging process itself.

"We believe that a previously uncharacterized developmental gene known as Spns1 may mediate the aging process," said Shuji Kishi, a TSRI assistant professor who led the study, published recently by the journal PLOS Genetics. "Even a partial loss of Spns1 function can speed aging.

Using various genetic approaches to disturb Spns1 during the embryonic and/or larval stages of zebrafish—which have emerged as a powerful system to study diseases associated with development and aging—the scientists were able to produce some models with a shortened life span, others that lived long lives.

While most studies of "senescence"—declines in a cell's power of division and growth—have focused on later stages of life, the study is intriguing in exploring this phenomenon in early stages. "Mutations to Spns1 both disturbs developmental senescence and badly affects the long-term bio-chronological ," Kishi said.

The new study shows that Spns1, in conjunction with another pair of , beclin 1 and p53 can, influences developmental senescence through two differential mechanisms: the Spns1 defect was enhanced by Beclin 1 but suppressed by 'basal p53.' In addition to affecting senescence, Spns1 impedes autophagy, the process whereby cells remove unwanted or destructive proteins and balance energy needs during various life stages.

Building on their insights from the study, Kishi and his colleagues noted in the future therapeutics might be able to influence aging through Spns1. He noted one commonly used antacid, Prilosec, has been shown to temporarily suppress autophagic abnormality and senescence observed in the Spns1 deficiency.

Explore further: Scientists create new genetic model of premature aging diseases

More information: "Aberrant Autolysosomal Regulation Is Linked to The Induction of Embryonic Senescence: Differential Roles of Beclin 1 and p53 in Vertebrate Spns1 Deficiency," PLOS Genetics, 2014.

Related Stories

Tipping the balance between senescence and proliferation

November 15, 2013

An arrest in cell proliferation, also referred to as cellular senescence, occurs as a natural result of aging and in response to cellular stress. Senescent cells accumulate with age and are associated with many aging phenotypes, ...

Experimental drug prolongs life span in mice

May 1, 2014

(Medical Xpress)—Northwestern Medicine scientists have newly identified a protein's key role in cell and physiological aging and have developed – in collaboration with Tohoku University in Japan—an experimental drug ...

Recommended for you

New class of RNA tumor suppressors identified

November 23, 2015

A pair of RNA molecules originally thought to be no more than cellular housekeepers are deleted in over a quarter of common human cancers, according to researchers at the Stanford University School of Medicine. Breast cancer ...

Batten disease may benefit from gene therapy

November 11, 2015

In a study of dogs, scientists showed that a new way to deliver replacement genes may be effective at slowing the development of childhood Batten disease, a rare and fatal neurological disorder. The key may be to inject viruses ...

Molecular clocks control mutation rate in human cells

November 9, 2015

Every cell in the human body contains a copy of the human genome. Through the course of a lifetime all cells are thought to acquire mutations in their genomes. Some of the mutational processes generating these mutations do ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.